
rev 8/18/13 1

 Introduction to Programming System Design

CSCI 455x (4 Units)

Description This course covers programming in Java and C++. Topics include review of basic
programming concepts such as control structures, functions, and arrays; coverage of more
advanced programming topics such as classes and linked lists; use of a container class
library to program with tools such as a map class and a sort function; and an introduction to
algorithm analysis. There will also be an emphasis on good development techniques such
as good code style and documentation, unit testing and use of debugging tools. A second
goal of the course is to introduce the Unix programming environment, including tools such
as the shell, simple shell scripts, and makefiles.

Prerequisite: minimal programming experience in a high-level language

Instructor Claire Bono

Contact Info bono@usc.edu | SAL 310 | 213-740-4510

Lecture 3 hours / week

Lab 2 hours / week

Textbook Big Java Early Objects, 5th Ed., by Cay Horstmann, Wiley
ISBN 978-1-118-70201-7
Note: this ISBN is for a less-expensive unbound binder-ready version, and is available in
the campus bookstore. There is also a relatively inexpensive electronic version available
on coursesmart.com. If you prefer a regular softcover book, it’s available from other
booksellers under ISBN 978-1-118-43111-5.

Assignments Programming assignments are graded on thorough testing, documentation, and style, as
well as correctness. All work to be submitted for the class is to be done individually unless
an assignment specifies otherwise.

Late policy for programming assignments. You may turn in a program up to two days late
for a penalty of 10% of the available points. So, for example, if you would have gotten a
70/100, you will get 60/100 instead (not 63). After the two day grace period, a late program
receives no credit.

Computing
environment

All submitted programs must compile and run on aludra Sun java compiler for java
programs and the g++ compiler for C++ programs. Aludra is a time-share Unix computer on
the SCF file system. You can access it remotely from PC's on or off campus using the x-
win32 software, or from Macs using the X11 or XQuartz application. The first lab will be
focused on introducing the programming environment.

If you choose to develop your programs on your own computer using another environment
(e.g., Eclipse or Visual C++) you are responsible for making sure your code compiles and

 2

runs on the SCF environment before submitting.

Labs The lab is intended for practicing some of the techniques learned in class on the computer

in an environment where you can get immediate help from the teaching assistant.

Labs meet once a week for two hours. They will start the first week of classes. You will be
given the lab exercises a few days before the lab: some require some advance preparation.
You may complete the lab exercises before the lab period if you wish, but they are due
during your lab section. If you finish early, you are free to leave (once you get the lab
checked off) or spend the rest of the time working on your other CS 455 assignments.

Each set of lab exercises usually can earn you up to 4 points. There be will up to roughly
40 lab points total. To take some of the pressure off the lab score only 80% of the available
points are applicable towards your final score in the class (but scaled to be worth 10% of
the total course score). This gives you some leeway if you have to miss a lab, or if you
don't have time to solve all of the problems one day.

Den students. Den students will complete their labs remotely, and submit them
electronically. Den students do not have to be available during the lab session. They can
get help on the lab the same way they do for other assignments: generally via email
(whenever) or by phone (during office hours) with someone on the course staff.

Exams All exams are closed book, closed note. Makeup exams will not be given. Absence due to a

serious illness will be an acceptable reason for missing an exam, and the final grade will be
scaled accordingly. The exam dates will be announced the first day of class.

Website https://www-scf.usc.edu/~csci455

Grading The following is the relative weight of each part of the course work. At the end of the
semester, you will have a score out of 100 percent. This score will be used in a class curve
to arrive at a letter grade. I guarantee that >=90 will be some kind of A, >=80 will at least be
some kind of B, >=70 will at least be some kind of C, and that >=60 will at least be some
kind of D.

Programming assignments 30%
Labs 10%
Midterm Exam 1 10%
Midterm Exam 2 20%
Final Exam 30%
Total 100%

Academic
Integrity

The USC Student Conduct Code prohibits plagiarism. All USC students are responsible for
reading and following the Student Conduct Code, which appears in the sections on
University Governance (sections 10.00-16.00) in the current version of SCampus.
SCampus is available on the web at http://scampus.usc.edu (follow the link on University
Governance on the left).

In this course we encourage students to study together. This includes discussing high level
general strategies to be used on individual assignments. But it would not, for example,

 3

include jointly developing pseudo-code for an assignment solution with another student. All
work submitted for the class is to be done individually, unless an assignment specifies
otherwise. Also, all exams are closed book, closed note.

Some examples of what is not allowed by the conduct code: copying all or part of someone
else's work and submitting it as your own, giving another student in the class a copy of your
assignment solution, consulting with another student during an exam, using a solution or
adapted solution to an assignment that you found on the web. The outside code resources
students will be allowed to use in assignments for this class are limited to code written by
the course staff for the purposes of helping students in the course, or code from the
textbook for this course. If you do use any such code not written by you, you are required
to acknowledge your sources in your README file. If you have questions about what is
allowed, please discuss it with the instructor.

Because of past problems with plagiarism in this and other computer science courses, we
may be running all submitted programming assignments through sophisticated plagiarism-
detection software.

Violations of the Student Conduct Code will be filed with the Office of Student Judicial
Affairs and Community Standards (SJACS), and appropriate sanctions will be given. The
sanctions are usually a lot more severe than not submitting the assignment.

Students

with
Disabilities

Any student requesting academic accommodations based on a disability is required to
register with Disability Services and Programs (DSP) each semester. A letter of verification
for approved accommodations can be obtained from DSP. Please be sure the letter is
delivered to the instructor as early in the semester as possible. DSP is located in STU 301
and is open 8:30 a.m. - 5:00 p.m., Monday through Friday. The phone number for DSP is
(213)740-0776.

(continued next page)

 4

Introduction to Programming System Design
CSCI 455x (4 Units)

Course Outline

Computing environment basics (1 lecture)
• Basic Unix commands
• Compiling and running Java programs on Unix
• Output and computation in Java

Lab 1: Development environment: basic Unix commands, compiling and running java programs

Using objects (2 lectures)
• Objects and object references
• Constructing objects
• Methods and method calls: accessors and mutators
• Primitive values; Strings
• Reading Java API documentation
• Examples: PrintStream, String, Rectangle, and Scanner classes

Lab 2: Write a program using a Java class; use Java documentation

Implementing classes (1 lecture)
• Instance variables
• Method definitions
• Scope and lifetime of variables
• Public interface vs. private
• Constructors
• Test programs
• Example: Student class

Lab 3: Implement a simple class to a specification

Control structures (1 lecture)

• If, while, for
• Boolean expressions
• Short-circuit evaluation, DeMorgan’s law
• Error-checking input
• Multi-way tests
• Dangling else

Arrays and Array Lists (2.5 lectures)

• Random access in arrays; ex: counting scores
• Partially filled arrays
• ArrayList class
• Arrays of objects
• Ex: array operations in Names class

o Incremental development
o Test-driven design
o Code refactoring

 5

Lab 4: Enhance a small program with loops and ArrayList

More on designing and defining classes (2.5 lectures)
• A class represents a single concept
• When static methods are used
• Methods: preconditions and postconditions

o Assert statements
• Instance variables vs. locals: minimize scope
• Class invariants

o Testing implementation invariants
• Parameter passing
• Methods with side-effects

o Defining immutable classes
o Returning references from inside objects
o Copying objects

Lab 5: Test assert statement; write invariants; line-oriented input

Algorithm analysis and big-O notation (1 lecture)

• Constant, linear and quadratic time
• Big-O of earlier examples
• Merge algorithm
• Finding big-O of Java library methods

Lab 6: Use debugger on supplied buggy program

Linear Container classes (2 lectures)

• java.utils LinkedList
• Lists vs. arrays
• Iterators
• Stacks
• Queues

Lab 7: Modify program using java LinkedList class
Lab 8: Empirical comparisons of (1) list vs. array implementation of a sequence, and (2) linear vs. binary
search on an array

Inheritance and Interfaces (1 lecture)
• Examples of inheritance
• Inheritance in Java graphics programs
• Overriding Object methods: clone, toString, equals
• Interfaces: ex: sorting and Comparable interface

Lab 9: Implement sort Comparator

Reading and Writing Text files; Exception handling (1 lecture)

• Scanners and PrintWriters
• Checked and unchecked exceptions
• Throw and catch exceptions

Lab 10: read command-line arguments, use exceptions for error-conditions.

 6

Maps, Sets, and Sorting (3 lectures)

• Java Map and Set interfaces
o Iterating over a Map or Set
o Ex: concordance

• Binary search and log n time
• Overview of binary search trees
• Hash tables

o Hash functions
o Collision resolution
o Applications
o Big-O

• Sorting: insertion sort and mergesort
• Comparison of Map implementations
• Java sort methods, Comparable interface

Lab 11: Implement concordance using a Map; sort results by number of occurrences

 (C++) Differences between C++ and Java (2 lectures)
• Running g++ compiler
• I/O
• Stand-alone functions
• Parameter passing
• Fixed-size arrays
• C++ object model
• Defining classes

Lab 12: Use C++ vectors

 (C++) Dynamic data, pointers, and linked lists (3 lectures)
• Pointers and memory
• Delete
• Pointers to objects
• Linked lists
• Dynamic arrays
• C strings
• Pointer arithmetic

Lab 13: C++ debugger; implement various linked list functions

Separate compilation and make (2 lectures)
• Compilation units
• Header files
• Forward declarations
• Makefiles

Lab 14: write a makefile; convert a single file program into a multi-file program

