CE 225 Course Syllabus

1/1/2014

Part I Course Organization

CE 225 Mechanics of Deformable Bodies (3 units)

Lecture	N	/Ion §	9:00-9:50am	Wed 9:	00-9:50am	Fri 9:()0-9:50am
Discussion (1of 3)	V	Ved 4	4:00-4:50pm	Thu 9:0	00-9:50am	Thu 4:	00-4:50pm
Professor	Dr. Vir	ncent	Lee				
Office	KAP230B						
Phone	213-7400568						
Email	vlee@usc.edu						
Office Hours	MWF 10:00-11:00am						
Teaching Assistant							
Office							
Phone							
Email							
Office Hours							
Prerequisites	CE20	5, Sta	atics				
Textbook(s)	Beer,	Joh	nston & DeWolf	Mech	anics of Mater	ials 6 th ed,	12 (or later)
References							
Course Descriptions	Analysis of stress and strain; axial, flexural, and torsional behavior of slender bars; elastic deflections; combined stresses; introduction to elastic stability and energy methods.						
Course Objectives	Students will understand the design process and learn approaches used to solve various engineering problems that are representative of those found in a professional environment. They will practice decision-making skills as they apply their knowledge of basic sciences, mathematics, and the engineering sciences to convert resources optimally to meet the stated needs of a project.						
Learning Objectives	This course will cover the design of beams subjected to vertical, horizontal and moment loads.						
Policies on:							
Late work							
Make-up work							
Incomplete work							
Extra credit							
Final grade schema is based on the following percentages of graded coursework :							
Homework	8	%					
Best 10 Quizzes	30	%					
Midterms & Final	62	%					
Total	100	%					

CE 225 Mechanics of Deformable Bodies Fall 2013 Class Schedule

Week	Date	Topics	Assianments	Problem Set	Quiz	
1	Jan	Review CE205. Statics: Axially Loaded Bars	2/5-8	#1	Quiz	
	13-1/	Lon20M L. King Holidovi Avially Londod			Mon#1	
2	20-24	Bars	2/9	#2	WOTH#1	
3	Jan	Poisson's Ratio, 3D Hooke's Law	2/11	#3	Mon#2	
	27-31	Normal & Shear Stresses	1/1-6		NR //0	
4	Feb 3-7	Torsion of Circular Bars	3/1-5	#4	Mon#3	
5	Feb 10-14	Torsion (cont.)	3/5-8	#5	Mon#4	
6	Feb	Feb17-President's Day; MT#1 on Wed; Fri:	5/1-5	#6		
	1/-Z1	Shear-Moment Diagram(Review);			Man#5	
7	Feb 24-28	Bending Stresses in Beams;	4/1-5	#7	Mon#5	
8	Mar 3-7	Bending Stresses in Beams (cont.); Beam Design	4/5-6	#8	Mon#6	
9	Mar 10-14	Shear Stresses in Beams	6/1-5	#9	Mon#7	
10	Mar 17-21	Spring Recess				
11	Mar 24-28	Shear Stresses (cont.)	6/5-6	#10	Mon#8	
12	Mar31 -Apr4	MT#2 on Mon; Transformation of Stresses	7/1-3	#11		
13	Apr 7-11	Mohr's Circle	7/4-6	#12	Mon#9	
14	Apr 14-18	Deflections of Beams	9/1-4	#13	Mon#10	
15	Apr 21-25	Deflections of Statically-Indeterminate Beams	9/5,7,8	#14	Mon#11	
16	Apr28 -May2	More Beam Deflections; Moment-Area Method, Review or MT#3 on Fri	9/9	#15	Mon#12	
	May9	Fri 8-10am Final				
		·				
	May16	Friday: Commencement				

STATEMENT ON ACADEMIC INTEGRITY

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one's own academic work from misuse by others as well as to avoid using another's work as one's own.

All students are expected to understand and abide by these principles. *SCampus,* the Student Guidebook, contains the Student Conduct Code in Section 11.00, while the recommended sanctions are located in Appendix A:

http://www.usc.edu/dept/publications/SCAMPUS/gov/

Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any suspicion of academic dishonesty. The Review process can be found at:

http://www.usc.edu/student-affairs/SJACS/

STATEMENT FOR STUDENTS WITH DISABILITIES

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible.

DSP Contact Information

OFFICE LOCATION	HOURS OF OPERATION	PHONE NUMBER
STU 301	8:30 a.m. until 5:00 p.m., Monday to Friday	(213) 740-0776

Part II Detailed Course Objectives

USC CEE

ABET Course Syllabus

Course Information, Textbook, and Supplementary Materials

Course Description: Analysis of stress and strain; axial, flexural, and torsional behavior of slender bars; elastic deflections; combined stresses; introduction to elastic stability and energy methods.

Required for: BSCE, BSCE Structural, BSCE Building Science, and BSCE Environmental

Prerequisites: CE 205 Statics

Co-Requisite: none

Required Textbook: Beer, Johnston & DeWolf, Mechanics of Materials, 4h ed. (2006)

Reference: none

Topics Covered	Lea	rning Outcomes		
Analysis of stress and strain; flexual and torsional behavior of slender bars; elastic deflections; combined stresses; introduction to elastic stability and energy	Students will understand the following topics, and perform analyses and calculations in these areas of study			
	1.	Internal forces of members subjected to axial and torsional loads		
	2.	Stress and strain, 1-D and generalized Hookes Law Stresses, strains and deformations of axially loaded members		
	3.	Stresses, strains and rotations of torsionally loaded circular bars		
methods	4.	Normal and shear bending stresses in beams		
	5.	Combined stresses, Mohr's circle		
	6.	Beam Deflections in statically determinate and indeterminate problems		
	7.	Design of beams subjected to vertical, horizontal and moment loads		
Analysis of the internal forces and moments of a structure	8.	Determine the axial forces of both statically determinate and indeterminate members		
	9	Determine the axial torques in both statically determinate and indeterminate circular solid and hollow shafts		
	10.	Determine the internal shears, moments and axial force reactions in beams, and draw the Shear and moment diagrams		
Analysis of stress	11.	Determine the internal stresses of statically determinate and indeterminate members		
	12.	Determine the internal stresses of statically determinate and indeterminate circular solid and hollow shafts		
	13.	Determine the normal and shear bending stresses in rectangular beams, beams with flanges and built up beams of various shapes		
	14.	Determine the principal and maximum shear stresses by the transformation formula and/or Mohr's circle for plane stress		
Deflections in a loaded beam	15.	Calculate beam deflections by direct integration, superposition and moment-area methods		
	16.	Analyze the statically indeterminate beams		

Mechanics of Deformable Bodies

3 units

USC CEE

Lecture and Lab Schedule							
Leo	ture	Discuussion					
Sessions per Week	Duration per Session	Session per Week	Duration per Session				
3	50min	1	50min				

Contribution of Course to Meeting the Professional Component

Engineering Topics 1 Design

Students INill understand the design process and learn approaches used to sdve various engineering problems that are representative of those found in a professional environment. They INill practice decision-making skills as they apply their knowedge of basic sciences, mathematics, and the engineering sciences to convert resources optimally to meet the stated needs of a project

This course INill cover the design of beams subjected to vertical, horizontal and moment loads.

Engineering Topics 1 other

<u>Constraints and Considerations</u>. Students INill understand the diverse constraints and considerations that are representative of what they INill encounter in an engineering practice. This course covers the following topics:

Economic 1 Manufacturability

Relation of Course Objectives to Program Outcomes

The Civil Engineering program is designed to teach beyond the technical content of the curriculum and prepare the students to utilize what they learn in a professional setting.

This course contributes to the program outcomes as outlined in the adjacent table:

 Course Contribution to Program Outcomes (a-k)
 Key

 a) An ability to apply knowledge of mathematics, science, and engineering.
 Image: Contribution to Program Outcomes (a-k)

Prepared by: V. Lee Professor of Civil Engineering

Date: Spring 2014