CE 507Mechanics of Solids I (3 units)

2013Fall Semester — Course Syllabus

Professor	Dr. Vincent Lee			
Office	KAP 230B			
Phone	(213) 740-0568			
Email	vlee@usc.edu			
Office Hours	MW 4-5pm			
Teaching Assistant				
Email				
Office Hours				
COURSE DESCRIPTION	COURSE DESCRIPTION			
Analysis of stress and strain; constitutive equations for elastic materials; plane stress and strain;				
torsion; introduction to plates and shells; energy methods.				
COURSE OBJECTIVES				
The materials presented	will serve as a basis of the line	near elasticity applicable	to several branches of	
solid mechanics, including the theories of plates and shells, composite materials, finite elements and				
geotechnical mechanics. The course is valuable for students prepared to be practicing engineers				
and/or scientists.				
LEARNING OBJECTIVES				
For the first month, the students will be introduced to the theory of tensors to be used in the theory				
of deformation and stresses, studied independently, which are subsequently united by introducing the				
stress-strain relations. The plane theory of elasticity in rectangular and polar coordinates is studied,				
and that of bar subjected to torsion. General solutions of elasticity are presented, including solutions				
by energy principles.				
Prerequisite	none			
Days, Time, Location	Monday and Wednesday	5:00 – 6:15 p.m.	RTH105, DEN	
	P.L. Gould: Introduction to Linear Elasticity, Springer-Verlag,			
Required Textbook	2 nd Edition, ISBN 0387941002			

Required as a Prerequisite for Other Courses	One of two choices of				
Required Course	Master of Science, Aerospace and Mechanical Engineering (Computational Fluid and Solid Mechanics)				
Grading Schema	Homework	16	%		
	All Exams	84	%		
	Total	100	%		

CE 507 Mechanics of Solids - Fall 2013 Class Schedule

DATE Lecture		Lecture		Homework
				Posted on Blackboard
MON	WED	No.	Topics	Due Wed Next Wk
08/26		1	Tanaar Natation Coordinate Transformations	
	08/28	2	Tensor Notation, Coordinate Transformations	HW#1: L01,02
9/02	9/02 Labor Day USC Holiday			
	9/04	3	Eigenvectors, Eigenvalues, Solving Cubic Polynomials	
9/09		4		HW#2: L03,04
	09/11	5	State of Stress	HW#3: L05
09/16		6	Equilibrium Equations. Principal Normal and Shear	
	09/18	7	Stresses; Strain and Deformation	HW#4: L06,07
09/23		8		
	09/25	9	Strain Compatibility; Stress vs. Strain	HW#5: L08,09
09/30		10	Elastic Constants, Linear Elasticity; Generalized Hooke's Law	,
	10/2	Wed	MIDTERM No. 1: Lectures 1-9	HW#6: L10
10/07		11	Deltromi Mitchell Equation (Otrops Compatibility) Evenue	
	10/09	12	Beltrami-Mitchell Equation (Stress Compatibility) Examples	HW#7: L11,12
10/14		13	Diana Stream Diana Strain	
	10/16	14	Plane Stress, Plane Strain	HW#8; L13,14
10/21		15	2-D Cartesian Problems	

DATE Lectu		Lecture		Homework	
				Posted on Blackboard	
MON	WED	No.	Topics	Due Wed Next Wk	
	10/23	16		HW#9: L15,16	
10/28		17	Polar Coordinates II; More 2-D Polar Coordinates		
	10/30	18	Examples	HW#10: L17,18	
11/04		19	Review, Midterm No. 2 Problems		
	11/06	Wed	MIDTERM No. 2: Lectures 10-18		
11/11		20	Non-Axisymmetric Problems		
	11/13	21	Torsion I	HW#11: L20,21	
11/18		22	Torsion II, Torsion Examples		
	11/20	23	Torsion II, Torsion Examples (cont.)	HW#12: L22, 23	
11/25		24	Energy Methods, I	HW#13: L24	
	11/27		No Class Wed before Thanksgiving		
Thanksgiving (USC Holidays)					
12/2		25	Virtual Displacement Methods, Rayleigh-Ritz Methods	HW#14, L25	
	12/4		Review of FINAL MIDTERM (No. 3): Lectures 19-25		
12/11			Final MidTerm #3 4:30 - 6:30pm		
Christmas Holidays					

CE 507 Mechanics of Solids – Fall 2013 Class Schedule

STATEMENT ON ACADEMIC INTEGRITY

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one's own academic work from misuse by others as well as to avoid using another's work as one's own.

All students are expected to understand and abide by these principles. *SCampus,* the Student Guidebook, contains the Student Conduct Code in Section 11.00, while the recommended sanctions are located in Appendix A:

- <u>http://www.usc.edu/dept/publications/SCAMPUS/gov/</u>. Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any suspicion of academic dishonesty.
- The Review process can be found at: <u>http://www.usc.edu/student-affairs/SJACS/</u>.

STATEMENT FOR STUDENTS WITH DISABILITIES

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible.

DSP Contact Information

- Office Location: STU 301
- Open: 8:30 a.m. until 5:00 p.m., Monday through Friday.
- Phone number: (213) 740-0776