Syllabus for AME 543

AME 543: Nuclear Thermal Hydraulics

Prerequisites: Undergraduate Degree in Engineering

Semester: Fall 2013

Time: Tu 6:40 – 9:20 PM Professor: Majid Motamed

• Office hours: By Appointment

• Phone and email: 310-7394424, nuveenmo@usc.edu

• TA: None

Course Requirements and Grades

• Required text: "NUCLEAR SYSTEMS VOLUME 1 THERMAL HYDRAULIC FUNDAMENTALS(2nd Edition)," by NEIL E. TODREAS AND MUJID S. KAZIMI, ISBN: 978-1-4398-0887-0.

Grading Breakdown:

Homework: 25% (projects)

Mid-Term: 35% (October 8, 2013)

Final: 40%

Breakdown of Course Material

TOPIC	PERIODS	DATES	Textbook Chapters
Introduction Introduction; Reactor Thermal-Hydraulic Characteristics; Thermal Design Principles	1	8/27	1-2
Power Reactors Functional description and operational aspects of various Nuclear Reactors	2	9/3	Lecture notes, Power-Point
Thermal Analysis of Fuel Elements Fuel Element Heat Conduction; UO ₂ Properties Temperature Distribution in Fuel Elements; Temperature Distribution in Redistributed Fuel Elements; Fuel-Coolant Thermal Resistance	3-5	9/3-9/24	8
Mid-Term	6	10/1	
Single-Phase Flow Introduction and Mathematical Relations; Lumped Parameter Integral Approach; Differential	7-8	10/8- 10/15	4

Conservation Equations			
Two-Phase Flow	9-10	10/22-	5
Definitions; 1-D Transport Equations;		10/29	
Flow regime maps; 1-D flow models; Pressure drop			
Nuclear Reactor Systems and operations	11	11/5	Lecture
			notes,
			Power-Point
Reactor Safety Systems and Accident Analysis	12	11/12	Lecture
			notes,
			Power-Point
Boiling Heat Transfer	13-14	11/19-	12
		11/26	
Closure	15	12/15	
Final		TBA	