Course Outline

AME 309....Spring 2013

Required Text: *Basic Fluid Mechanics, Fifth Edition*, David C. Wilcox Earlier editions of the text are inappropriate for this course. There have been significant changes in nomenclature, material included and homework problems.

Class web site: http://www.dcwindustries.com/309

- 1. BASIC CONCEPTS (Week 1)
 - Vector Calculus Review
 - Dimensions and Units
 - Pressure, Surface Tension, Viscosity, Couette and Pipe Flow
- 2. DIMENSIONAL ANALYSIS (Weeks 2-3)
 - Buckingham П Theorem
 - Similitude
- 3. EFFECTS OF GRAVITY ON PRESSURE (Weeks 3-4)
 - Hydrostatic Pressure, Pressure Measurement Techniques
 - Hydrostatic Forces on Plane Surfaces
 - Hydrostatic Forces on Curved Surfaces
 - Buoyancy
- 4. KINEMATICS (Weeks 4-5)
 - Eulerian and Lagrangian Descriptions
 - Streamlines, Streaklines, Pathlines
 - Vorticity and Circulation
 - Reynolds' Transport Theorem
- 5. MASS AND MOMENTUM PRINCIPLES (Weeks 6-7)
 - Integral Form of the Mass and Momentum Principles
 - Continuity and Euler Equations
 - Galilean Invariance of Euler's Equation
 - Bernoulli's Equation
 - Pitot and Pitot-Static Tubes

- 6. CONTROL-VOLUME METHOD (Weeks 7-9)
 - Stationary and Moving Control Volumes
 - Deforming Control Volumes
 - Indirect Force Computation, Reaction Force
 - Accelerating Control Volumes
- 7. ENERGY PRINCIPLE (Weeks 9-11)
 - Thermodynamics
 - Energy Equation in Integral and Differential Form
 - Approximate Methods
 - Pipe Flow

8. ONE-DIMENSIONAL COMPRESSIBLE FLOW (Weeks 12-13)

- Importance of Mach Number
- Isentropic Flow
- Normal Shock Waves
- Laval Nozzle
- 9. POTENTIAL FLOW (Weeks 13-15)
 - Velocity Potential and Streamfunction
 - Fundamental Solutions
 - Flow Past a Cylinder
 - Circulation and Lift
 - Accelerating Cylinder
 - Linear Airfoil Theory

10. VORTICITY AND VISCOSITY (Week 15)

- Vortex Force, Helmholtz Theorem, d'Alembert's Paradox
- Viscous Effects and Vorticity Generation
- Lift and Drag of Common Objects