Spring 2013

General Course Information

Course Description

This is a graduate course that covers the basic concepts in probabilistic modeling of the spatial and/or temporal phenomena in the subsurface environments. It introduces the students to classical and modern spatial estimation and stochastic simulation techniques including variogram-based, objected-based and training image-based methods. Topics include stochastic processes, multivariate distributions, variogram modeling, spatial interpolation (e.g., variations of kriging and cokriging), stochastic simulation (e.g., sequential Gaussian simulation), object-based simulation methods and multiple-point geostatistics. The GSLIB and SGeMS software will be introduced and case studies from energy industry and environmental sciences will be discussed.

Prerequisites

The material in this course would require basic familiarity with linear algebra and probability and statistics.

Course Instructor

Behnam Jafarpour Office: HED 313 Tel. (213) 740-2228 Email: behnam.jafarpour@usc.edu

Office Hours

Thursdays 14:00-16:00 (HED 313) or by appointment.

Lectures

Lectures take place in **Room OHE-100C** and are scheduled for **Fridays 12:00pm** – **2:40pm**. Four tutorial sessions are included for introduction to GSLIB and SGeMS software.

Text Book

Reading material for each topic will be posted to DEN. While there is no required textbook for this course, some suggested references are provided at the end of this document.

Homework (30%)

There will be a total of **Six (6) problem sets** that account for 30% of the final grade. Problem sets will be provided at the end of the lecture on the specified dates in the tentative schedule sheet (posted to DEN) and are due before lecture begins on the due date. Late homework submissions will not be accepted unless prior arrangement is made with the instructors.

Exam (40%)

There will be one two-hour **closed-book** exam for this course (a formula sheet will be provided by the instructor).

Exam Date: November 9, in Class

Term Project (30%)

Each student is required to choose a topic for class project and confirm it with the instructor by **September 28**. A list of potential topics will be posted to DEN. Students are not limited to choose a topic from that list, but all selected project topics must be approved by the instructor before September 28. Students are expected to provide two progress reports (on **October 19** and **November 16**), each carrying 10% of the project grade, a 15-minute presentation (30% of the project grade), and a final project report (50% of project grade). Total contribution of the class project to final grade is 30%. The content, format, and grading criteria for the above components are listed in the **Term Project** information sheet.

<u>Grading Policy</u> Homework = 30% Exam = 40% Project = 30%

Academic Integrity Syllabus Statement

Students are expected to adhere to the USC Student Conduct Code. Students are encouraged to consult with the instructor when in doubt about the violating the Conduct Code.

Disabilities Services and Program (ASP) Policy Statement

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me or the TA as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m. – 5:00 p.m., Monday through Friday. The phone number for DSP is (213) 740-0776.

Suggested Texts

You may find sections of the following texts to be useful references in preparing for this course.

- 1. Isaaks E.H., Srivastava R.M. (1989): An Introduction to Applied Geostatistics, ISBN: 0195050134.
- 2. Goovaerts P. (1997): Geostatistics for Natural Resources Evaluation. Oxford University Press.
- 3. Chiles J.P., Delfiner P.. (1999): Geostatistics: Modeling Spatial Uncertainty, John Wiley and Sons Inc., NY.
- 4. Remy N., Boucher A., Wu J. (2009): Applied Geostatistics with SGeMS A User's Guide, ISBN: 9780521514149
- 5. Deutsch C.V., Journel A.G. (1998): GSLIB: Geostatistical Software Library and User's Guide. Oxford University Press.

PTE 572: Geostatistics Instructor: Prof. Behnam Jafarpour

Spring 2013

Week	Date	Lecture	Readings	Out	In
Introducti	on and Review	w Material (1 Week)			
Topic	1: Introducti	on			
1	08-31	No Lectures \rightarrow Make-Up (TBD)	T 11.1		
1	TBD	T1L1: Course Information, Objectives, and Expectations	TILI	113371	
		1 1L2: Course Overview T1L2: Deview of Linear Algebra and Vector Calculus	11L2 T11-2	HWI	
		11LS: Review of Linear Algebra and Vector Calculus	TILS		
<u>Part I: Un</u> Topio	1variate and E	Sivariate Statistics (2 Weeks)			
2 1 opic	09-07	T2L 1: Discrete and Continuous Random Variables	T2L1		
2	07 07	T2L2: Moments and Expectation	T2L2		
3	09-14	No Lecture (ECMOR-XII) \rightarrow Make-Up (TBD)		HW2	HW1
	TBD	T3L1: Common Distributions and CDF Transformations	T3L1		
		T3L2: Normal Distribution and Test of Normality	T3L2		
		T3L3: Sampling and Monte-Carlo Simulation	T3L3		
Topic	4: Bivariate S	Statistics (1 Week)			
4	09-21	T4L1: Bivariate Distributions, Covariance and Correlation	T4L1		
		T4L2: Stationary Random Processes	T4L2		
		SGeMS Session 1: Statistical Data Analy	/sis		
Part 2: Tw	o-Point Spati	al Statistics (6 Weeks)			
Topic	5: Second-Or	der Spatial Statistics (1 Week)			
5	09-28	T5L1: Two-Point Spatial Relations	T5L1	HW3	HW2
		T5L2: Variogram and Its Properties	T5L2	Project	Proposal Due
		T5L3: Variogram Inference and Modeling	T5L3		
Торіс	6: Linear Spa	atial Estimation and Kriging (1 Week)			
6	10-05	T6L1: Linear Estimators and Their Properties	T6L1		
		T6L2: Spatial Estimation and Kriging	T6L2		
		T6L3: Simple Kriging (SK)	T6L3		
		SGeMS Session 2: Variogram Modeing and	Kriging		
Topic	7: Variations	of Kriging (2 Weeks)			
7	10-12	T7L1: Ordinary Kriging and Kriging with Trend	T7L1	HW4	HW3
0	10.10	T7L2: Block Kriging	T7L2		
8	10-19	T/L3: Sequential Indicator Kriging (SIK)	T7L3	Progres	ss Report 1
		17L4: CoKriging	T7L4		
Торіс	8: Stochastic	Simulation (2 Weeks)			
9	10-26	T8L1: Estimation vs. Conditional Simulation	T8L1	HW5	HW3
		T8L2: Sequential Gaussian Simulation (SGS)	T8L2		
10	11-02	T8L3: Sequential Indicator Simulation (SIS)	T8L3		
		T8L4: Co-Simulations	18L4		
		SGeMS Session 3: Sequential Simulati	on		
11	11-09	EXAM (in Class)			
Part 3: Pat	ttern-Based S	patial Statistics (4 Weeks)			
Topic	9: Object-Ba	sed Modeling (1 Week)			
12	11-16	T9L1: Limitations of Two-Point Geostatistics	T9L1	HW6	HW5
		T9L2: Modeling Discrete Geologic Objects	T9L2	Progres	ss Report 2
13	11-23	No Lecture (Thanksgiving)			
Торіс	10: Multiple	Point Geostatistics (3 Weeks)			
14	11-30	T10L1: Introduction to Multipoint (MP) Geostatistics	T10L1		HW6
		T10L2: Formulation of MP Geostatistics	T10L2		
		T10L3: MP Conditional Simulation (SNESIM Algorithm)	T10L3		
15	12-07	T10L4: Alternative Facies Modeling Techniques	T10L4		
		SGeMS Session 4: Multipoint Statistical Sin	nulation		
<u>Project Pr</u>	esentations &	Report (1 Week)			
16	12-14	Project Presentations (11AM-1:00PM)		Project	Presentations
	12-17	Final Project Report		Project	Report Due

Statement for Students with Disabilities

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m.–5:00 p.m., Monday through Friday. The phone number for DSP is (213) 740-0776.

Statement on Academic Integrity

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one's own academic work from misuse by others as well as to avoid using another's work as one's own. All students are expected to understand and abide by these principles. Scampus, the Student Guidebook, contains the Student Conduct Code in Section recommended sanctions are 11.00. while the located in Appendix A: http://www.usc.edu/dept/publications/SCAMPUS/gov/. Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any dishonesty. Review process suspicion of academic The can be found at: http://www.usc.edu/student-affairs/SJACS/.