

 Fundamentals of Computer Programming
CS 101 (3 Units)

Overview This course introduces students to the field of computer science
and engineering. An overview of the disciplines within computer

science such as networks, AI, robotics, graphics, and computer
architecture will be integrated throughout the course. Starting
from first principles of computer organization, students will receive

a foundation in programming focusing on C/C++. Fundamental
programming concepts along with current issues such as

parallelism and embedded systems will be covered through
relevant programming projects. The course will culminate in a
comprehensive programming assignment and/or a team-based

robotics project that integrates the concepts taught in the course.
A lecture/lab course format will be employed to provide hands-on

experience and active learning techniques.

Learning
Objectives

Upon completion of this course students will be able to:
1. Define and discuss the disciplines of computer science with

the intention of choosing future courses that are applicable
to the student’s personal learning goals.

2. Understand the key hardware components in a modern
computer system and how software is mapped to the HW.

3. Use a computer to solve problems by developing simple

algorithms and then implement them using a specific
programming language

4. Implement key algorithms within the field
5. Understand and determine the computational complexity of

simple algorithms

6. Write computer programs using conditional and iterative
structures, functional decomposition, and basic

parallelization techniques
7. Select an appropriate basic data structure (e.g. arrays) and

access methods (e.g. pointers)
8. Understand basic object-oriented principles.
9. Design non-trivial embedded software to control a robot to

navigate and interact within a controlled environment.

Prerequisite None.

Lecture M,W 12:00-1:50 p.m. in RTH 105

Discussion TBA

 - 2 -

Textbook
Info

C++ Programming: Program Design Including Data Structures, 6th
Ed. D.S. Malik, Course Technology, 2011 (ISBN 978-1133526322)

Instructor
Info

Professor Mark Redekopp
Office: EEB-222, Phone: (213) 740-6006
E-mail: redekopp@usc.edu

Office Hours: M,W: 10-11:30, 2-3 and T: 11-12

TA & Grader
Info:

Ali Khodaei (khodaei@usc.edu)

Grader: TBA

Grading The following point structure will be used in determining the grade

for the course. Final grade will be based upon the total points

received, the highest total in the class, and the average of the class.
Participation & Activities 10%

Programming Assignments 30%
Midterm Exam 25%
Robotics Project + Report 10%

Final Exam 25%

Participation
& Activities

Unlike some traditional classroom settings where the instructor talks
and students listen, we will attempt to create a classroom
environment where the instructor facilitates active student

participation in their own learning process. Students are expected
to set their own learning goals (i.e. be curious) and then actively

pursue those goals both in and out of the classroom through
personal study, programming, and in-class activities. Simply

showing up to class is not enough; come to class ready to think, ask
questions, and work with your fellow students.

Small in-class and out-of-class activities (both individual and group-
based) will be provided to help facilitate achievement of learning

goals. Activities will be graded on a scale of 0-4 as follows:
 4 = Excellent = Demonstrates deep understanding through

use of relevant concepts, consideration/analysis of possible

improvements, and awareness of the limitations of your
solution as well as a high-degree of effort in the presentation

and documentation of your solution
 3 = Good = Demonstrates sufficient understanding through

the use of relevant concepts to solve the problem. May

indicate only moderate effort in the presentation and
documentation.

 2 = Novice = Important relevant concepts were ignored or
used improperly. Moderate effort was made in the
presentation and documentation.

 1 = Unsatisfactory = Solution was poorly developed and
ignored relevant concepts as well as any analysis of the

mailto:redekopp@usc.edu
mailto:khodaei@usc.edu

 - 3 -

solution’s capability, improvement, or limitation. Low-effort
was made in the presentation and documentation of the

solution
 0 = Incomplete

Students may miss 2 activities due to sickness or absence without
penalty.

Programming

Assignments

Programming assignments are larger more comprehensive

assignments that should challenge you to integrate several
programming concepts. They are to be completed individually

unless otherwise noted. (A few group assignments may be
scattered throughout the semester). A separate document will be
provided listing the expectation for the submission, style, and

documentation of programming assignments as well as rubrics for
how assignments will be graded. Copying (and then modification) of

any portion of code from Internet sources or fellow students is
prohibited unless cleared with the instructor. See the Statement on
Academic Integrity.

Robotics

Project and
Report

Students will work in groups of two to complete a robotics project

related to sensing and navigation. Project and report guidelines will
be provided at the appropriate time.

Policies Statement for Students with Disabilities

Any student requesting academic accommodations based on a

disability is required to register with Disability Services and
Programs (DSP) each semester. A letter of verification for approved

accommodations can be obtained from DSP. Please be sure the
letter is delivered to me (or to TA) as early in the semester as
possible. DSP is located in STU 301 and is open 8:30 a.m.–5:00

p.m., Monday through Friday. The phone number for DSP is (213)
740-0776.

Statement on Academic Integrity
USC seeks to maintain an optimal learning environment. General
principles of academic honesty include the concept of respect for the

intellectual property of others, the expectation that individual work
will be submitted unless otherwise allowed by an instructor, and the

obligations both to protect one’s own academic work from misuse by
others as well as to avoid using another’s work as one’s own. All
students are expected to understand and abide by these principles.

Scampus, the Student Guidebook, contains the Student Conduct
Code in Section 11.00, while the recommended sanctions are

located in Appendix A:
http://www.usc.edu/dept/publications/SCAMPUS/gov/. Students will
be referred to the Office of Student Judicial Affairs and Community

Standards for further review, should there be any suspicion of
academic dishonesty. The Review process can be found at:

http://www.usc.edu/student-affairs/SJACS/.

http://www.usc.edu/dept/publications/SCAMPUS/gov/
http://www.usc.edu/student-affairs/SJACS/

 - 4 -

Introduction to Programming for Computer Scientists
CSCI 101 (3 Units)

Course Outline
(All Programming Assignments [PA’s] listed indicate the date assigned)

Week 1 – Overview of Computer Science and Computer Organization

 - Introduction to the CS and CECS curriculum and field

- Basic Computer Organization, Program Execution, Data Storage/Representation

 Activity: Programming Environment and Tools + First Program: Learn basics of

programming environment, understand the concept of compiled program, text

editors, debuggers, etc.

Reading: Chapter 1

Week 2 – Basic Program Design and Abstractions + Programming Environment

 - Program structure + Simple I/O

- Algorithms, Big-O notation and complexity

 Activity: Compiler and Run-Time Errors

Activity: Algorithms and time complexity exercise + Research algorithms in a

chosen area of interest

Reading: Chapter 2 and 3

Week 3 – Algorithmic Thinking and C Control Structures

 - Conditional and Iterative Statements

 Activity: Develop play rules for a game-

PA1: Students will program a simulation of random process and understand how

to use iterative and conditional structures in the process.

Reading: Chapter 4 and 5

Week 4 – Program Decomposition and Functions

 - Functions

 Activity: Write the program that implements a linear as well as a binary search of

an integer array

PA2: Develop a program for a simple game. Decompose the problem into

tasks/functions.

Reading: Chapter 6

Week 5 – 1-D Arrays, Pointers, Dynamic Memory Allocation, and C Strings

 - Dynamic memory allocation

 PA3: String Manipulation: Students will design a program to perform string

matching of certain patterns that require students to understand array operations

and strings.

Reading: Chapter 9 and 13a

Week 6 – 2-D Arrays and File I/O

 - 2D Arrays and File I/O

 Activity: Implement string search using a DFA approach and measure

improvement

PA4: Chroma Key (Green-screen) Image Processing: Students will perform the

green-screen operation on a set of images requiring them to access and

manipulate 2D arrays and File I/O operations.

Reading: Chapter 9 and 13a

 - 5 -

Week 7 – Parallel Programming Techniques

 - Threads & OpenMP

 Activity: Parallelize string search

 PA5: Parallelizing Matrix Operations – Students will parallelize data independent

matrix operations such as the green screening or other image manipulations.

Reading: Class Notes

 ** MIDTERM **

Week 8 – More Parallel Program and Introduction to Objects & ADT’s

 - Basic Synchronization (Locks, Condition Variables)

- Structs

 Activity: Parallelize Monte-Carlo simulation

Reading: Chapter 10 and 11

Week 9 –Classes

 - Classes

 Activity: Linked List Implementation

PA6: Social network modeling

Reading: Chapter 13b and 17

Week 10 – Data Structures and STL

 - Vectors & Deques

 Reading: Chapter 14 and 22

Week 11 – Selected Algorithms & CS Disciplines

 - Graphs and Traversal Algorithms

 PA7: Implement an algorithm of choice on your social network

Reading: Chapter 21

Week 12 – Introduction to Embedded Systems and Robotics

 - Programming the robot (Language differences)

- I/O

- Robotics Project Intro

 Activity: Robot Motion – Students will program their robot to perform specific

maneuvers

Week 13 – Robot Project 1

 - Sensors

 Activity: Robot Sensing – Students will program their robot to use sonars, IR

sensors, and photosensors to navigate their robot

Week 14 – Robot Project 2

 - Guest Lectures + Open Lab for Project

 Project: Robot Obstacle Course and/or Collaborative Team Maneuvers

Week 15 – Robot Project 3

 Project Due/Demo Day

** Final – December 10th at 11 a.m.**

