AME 525: Engineering Analysis I Prof. P.K. Newton, RRB 221, 740-7782 (newton@usc.edu) Spring 2011 Time: MW 5:00-6:20, OHE 132 Office Hours: TBA TA & Grader: TBA

The course will cover techniques from linear algebra, vector analysis, and complex variable theory.

Grading:

- \bullet Homework 20 %
- Midterm (TBA) 35 %
- \bullet Final (Wed May 4th 4:30-6:30) 45 %
- No exceptions/extensions will be made on Midterm or Final Exams

Books:

Advanced Engineering Mathematics, Peter V. O'Neil (7th Ed.)

Lecture Outline:

- 1. Finite dimensional vector spaces and linear algebra
 - (a) Basic concepts of linear vector spaces
 - (b) Eigenvalues and eigenvectors
 - (c) Solving Ax = b: The Fredholm alternative
 - (d) Least squares methods
 - (e) Diagonalization and spectral decomposition
 - (f) Singular values

- 2. Vector analysis
 - (a) Line integrals in the plane
 - (b) Green's theorem in the plane
 - (c) Path independence
 - (d) Multiply connected domains
 - (e) Line integrals in space
 - (f) Gauss' divergence theorem
 - (g) Green's identities
 - (h) Stokes theorem
- 3. Complex variable theory
 - (a) Basic concepts
 - (b) Analytic functions and the Cauchy-Riemann equations
 - (c) x = f(z) as a mapping
 - (d) Derivatives
 - (e) Cauchy-Riemann equations
 - (f) Harmonic functions
 - (g) Integrals of complex functions
 - (h) Contour integrals
 - (i) Cauchy-Goursat theorem
 - (j) Cauchy integral formula
 - (k) Residue theory
 - (l) Conformal mapping and 2D inviscid flows