AME 541: Linear Control Systems II

Time: Th 6:30-9:10
Instructor: H. Flashner
Office: Olin Hall 430E
Phone: (213) 740-0489
Office hours: Tu10-12, W12-2
email hflashne@usc.edu

Teaching Assistant: Hancheol Cho
Office: VHE202
e-mail hancheol.cho@gmail.com
Office hours: MW3-5

Homework: Will be assigned every Thursday and **must be submitted** the following Thursday

Grading: The final grade will be assigned according to the following weightings:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm (October 20)</td>
<td>30%</td>
</tr>
<tr>
<td>Final (December 8, 7pm)</td>
<td>50%</td>
</tr>
</tbody>
</table>

Textbook

Reference books

Outline

1. Mathematical Representation of Systems (Notes)
(a) Modeling of dynamical systems

2. **Linear Systems Modeling** (Chapters 2-4)
 (a) State representation
 (b) Linearization
 (c) Realizations of transfer functions

3. **Mathematical Background** (Notes)
 (a) Linear spaces, norms, basis
 (b) Properties of matrices
 (c) Lyapunov equation
 (d) Singular value decomposition

4. **Solution of State Equations** (Chapter 5-7)
 (a) Properties of transition matrix
 (b) Computation of transition matrix for time-invariant systems
 (c) Equivalent Systems
 i. Time-invariant systems
 ii. Time-varying systems
 (d) Realizations
 i. Time-invariant systems
 ii. Time-varying systems
 (e) Discretization and solution of discrete-time equations

5. **Stability Analysis** (Chapters 8-9)
 (a) Input-output stability of LTI systems
 (b) Internal stability
 (c) Lyapunov theorem
 (d) Bounded-input, bounded output stability
 (e) Conditions for input-output stability

6. **Controllability** (Chapter 11-13)
 (a) Controllability and reachability: definitions and conditions
 (b) Controllable decomposition
 (c) Discrete systems

7. **Observability** (Chapter 15-16)
(a) Observability and constructability: definitions and conditions
(b) Observable decomposition
(c) Kalman decomposition

8. **Minimal Realizations** (Chapter 17)
 (a) Implications of of coprimness
 (b) Minimal realization of SISO systems
 (c) Balanced realization of SISO systems

9. **Poles and Zeros of MIMO Systems** (chapters 18-19)
 (a) Polynomial matrices: Smith form
 (b) Rational matrices: Smith-McMillan form
 (c) McMillan degree, poles and zeros
 (d) Transmission zeros and invariant zeros
 (e) Minimal realization of MIMO systems

10. **State Feedback and State Observers** (Chapter 14,16)
 (a) Stabilizability
 (b) Pole placement
 (c) Observers
 (d) Reduced-order observers.
 (e) Separation principle and output feedback

11. **Linear Optimal Control** (Chapter 20)
 (a) Quadratic performance indices
 (b) Riccatti equation
 (c) Robustness characteristics

12. **Frequency Domain Analysis** (Notes)