CE 540: Limit Analysis of Structures (3 units)

Course description and benefits:

We review the basics of plastic and limit analysis with application in design and evaluation of common structural systems. The course will help you better understand the inelastic behavior of structural systems and will assist you in performing nonlinear inelastic analysis to estimate acceptability of a design for a set of limit-states. Advanced applications in earthquake-resistant design and collapse analysis will be discussed. The goal is to understand and to apply the theorems of plastic analysis to setup limits of design appropriately and to evaluate structural performance accordingly. Definition, estimation, and evaluation of collapse mechanisms of common structural systems are highly emphasized. You will be able to perform nonlinear inelastic analysis and design of simple frames, walls, and bracing systems by the end of the semester successfully.

Course Outline:

Background and Review:

- (1) Course Objective, Basics, Definitions, and Applications
- (2-3) Hysteresis and constitutive relationships Yield and fracture criteria
- (2-3) Inelasticity at cross section (inelastic pure bending, combined bending and axial, combined flexural and shear)

Plastic and Limit Analysis:

- (4-7) Simple plastic analysis methods: (event-to-event calculation, equilibrium method, Kinematic method)
- (8-11) Fundamental theorems of plastic analysis: (upper-bound theorem, lower-bound theorem, uniqueness theorem)
- (12-15) General methods of limit analysis (basic mechanism types, number of basic mechanisms, combination of mechanisms, mechanism analysis by center of rotation)
- (16-18) Shakedown theorems (deflection stability) Methods of shakedown analysis

(19-21) Minimum weight design theorems and applications, optimization methods, linear programming in limit analysis, fully-stressed design

Applications of Plastic and Limit Analysis:

(22-24) AISC code provisions Concrete yield line analysis

(25) Capacity-based design Pushover analysis

Advanced topics and Applications (time-permitting):

(26-28) Mechanisms of inelastic behavior and capacity of modern structural systems: SMRF, CBF, EBF, core wall system, coupled walls and link beams, hybrid wall-frame structure, parallel and serial systems

Design for energy (Professor Anderson's work)

Collapse analysis: (sideway, gravitational, and progressive)

Seismic design (performance-based design and evaluation)

Computational tools (Matlab, Mastan, Arcade, SAP, Perform, OpenSees, ELS)

Course Learning Outcomes

Objective 1: Learn how to identify and set important limits of design for different structures under various loading conditions

Objective 2: Learn the principles of plastic design for beams and frames and apply them to understand collapse mechanism and strength of structural systems against collapse

Objective 3: Learn the basics of nonlinear structural analysis and its applications in dynamics of structures and earthquake engineering

Objective 3: Learn the concept of capacity-based design and its applications in structural design

Objective 4: Get insight into ductile behavior of common structural systems and their behavior

Fall Semester 2009:

Class	Date	Торіс	
1	Monday, August 24, 2009	Course Objective, Basics, and Applications	
2	Wednesday, August 26, 2009	Hysteresis, constitutive relationships, and yield and fracture criteria	
3	Monday, August 31, 2009	Inelasticity at cross section	
4	Wednesday, September 02, 2009	Simple plastic analysis methods	
	Monday, September 07, 2009	Labor Day, University Holiday	
5	Wednesday, September 09, 2009	Simple plastic analysis methods	
6	Monday, September 14, 2009	Simple plastic analysis methods	
7	Wednesday, September 16, 2009	Review	
8	Monday, September 21, 2009	Fundamental theorems of plastic analysis	
9	Wednesday, September 23, 2009	Fundamental theorems of plastic analysis	
10	Monday, September 28, 2009	Fundamental theorems of plastic analysis	
11	Wednesday, September 30, 2009	Review	
12	Monday, October 05, 2009	General methods of limit analysis	
13	Wednesday, October 07, 2009	General methods of limit analysis	
14	Monday, October 12, 2009	General methods of limit analysis	
15	Wednesday, October 14, 2009	Review	
	Monday, October 19, 2009	Mid-term (Tentative)	
16	Wednesday, October 21, 2009	Minimum weight design and optimization applications	
17	Monday, October 26, 2009	Minimum weight design and optimization applications	
18	Wednesday, October 28, 2009	Minimum weight design and optimization applications	
19	Monday, November 02, 2009	Mechanism analysis by center of rotation/Computer Methods	
20	Wednesday, November 04, 2009	Shakedown theorems and methods/Steel Design Example	
21	Monday, November 09, 2009	Shakedown theorems and methods/Concrete Design Example	
22	Wednesday, November 11, 2009	AISC code provisions and concrete yield line analysis	
23	Monday, November 16, 2009	AISC code provisions and concrete yield line analysis	
24	Wednesday, November 18, 2009	AISC code provisions and concrete yield line analysis	
25	Monday, November 23, 2009	Capacity-based design and pushover analysis	
26	Wednesday, November 25, 2009	Advanced topics and applications	
27	Monday, November 30, 2009	Project presentation	
28	Wednesday, December 02, 2009	Project presentation, The last lecture	
	Monday, December 07, 2009	Study Day	
	Wednesday, December 09, 2009	Final Exam	
	Wednesday, December 16, 2009	End of Session - Winter Recess Dec. 17	

Course Information

Credits:	3
Prerequisite By Course: By Topic:	Strength of Materials and Solid Mechanics Structural Analysis (determinate and indeterminate) and Matrix Structural Analysis/Finite Element Method Dynamics of Structures Understanding of Structural Behavior Design of Steel Structures Design of Concrete Structures
Course Requirements:	Please attend the lectures regularly. Active participation in discussions is encouraged.
Time and location:	Mondays and Wednesdays, 5:00-6:15 pm at KAP163
Instructor:	Arzhang Alimoradi, Ph.D., P.E. Office Hours: before the class at KAP 230D or KAP 209 by appointment Phone: 213-483-6490 Ext. 151 (for emergencies otherwise please use email address below) Email: <u>alimorad@usc.edu</u>
Webpage:	On Blackboard
Required Text:	Stuart S. J. Moy, <i>Plastic Methods for Steel and Concrete Structures</i> , Halsted Press, 1982, ISBN: 978-0470270790 (Available from Bookstore)
Course Material:	Class notes, reading materials, and journal papers
Suggested References:	Egor P. Popov, <i>Engineering Mechanics of Solids</i> , Second Edition, Prentice Hall, 1991
	Milan Jirasek and Zdenek P. Bazant, Inelastic Analysis of Structures, Wiley, 2002
	Wai-Fah Chen and Da-Jian Han, <i>Plasticity for Structural Engineers</i> , J. Ross Publishing; 2007
	Subhash C. Goel and Shih-Ho Chao, Performance-Based Plastic Design: Earthquake-Resistant Steel Structures, International Code Council, 2008

	Michel Bruneau, Chia-Ming Uang, and Andrew Whittaker, Ductile Design of Steel Structures, McGraw-Hill Professional, 1997		
	Thomas Paulay and M. J. N. Priestley, <i>Seismic Design of</i> <i>Reinforced Concrete and Masonry Buildings</i> , Wiley-Interscience, 1992		
	M.J.N. Priestley, G.M. Calvi, and M.J. Kowalsky, <i>Displacement Based Seismic Design of Structures</i> , IUSS Press, 2007		
	M. Bill Wong, <i>Plastic Analysis and Dest</i> Butterworth-Heinemann, 2009	I. Bill Wong, <i>Plastic Analysis and Design of Steel Structures</i> , putterworth-Heinemann, 2009	
Course Format: Two and a half hour lecture per week		X	
Assessment and Composition of Grades	Quizzes: Midterm (Monday, Oct. 19 ^h): Final Exam (Wednesday, Dec. 9th): Project and presentation (optional) Due: Monday, November 30, 2009: Homework:	10% 30% 40% 05% 20%	
Homework:	Please submit your assignments by the due date (a week after they are assigned)		
Project (Optimal):	Optimal): Individually or in teams of two. You can choose any subject related to the course but you are encouraged to discuss you topic with the instructor first. A short report and a class presentation conclude your project.		
First day of classes: End of session:	Monday, August 24, 2009 Wednesday, December 16, 2009		