
1

Compiler Development
ITP 439 (3 Units)

Spring 2018

Catalogue
Description

Practical applications of techniques used to develop a compiler. Topics include
scanners/parsers, intermediate representations, optimization, and the back-end.

Objective This course provides students with a fundamental understanding of how compilers
are created. As the focus of most present-day compiler development is on
intermediate representations, optimization, and the back-end, this course will tilt
more towards these concepts, though it will touch on the major front-end
concepts.

Furthermore, although compilers are the primary topic of this course, it is also the
intent to provide students with the extremely valuable experience of working with
an existing large-scale code base (specifically LLVM). This includes the requirement
to utilize some test-driven development practices.

Language Programming assignments are in C++, and extensive prior experience with the
language is expected.

Prerequisites ITP 435 or Instructor approval

Instructor Sanjay Madhav

Email Email: madhav@usc.edu

Office Hours Tuesday/Thursday 4:30-6:30PM in OHE 530H

Lecture M/W: 5-6:20PM in KAP 140

Course Structure This course features programming assignments that involve creating a working
compiler for a subset of C called University Simple C (USC), which was created
specifically for this course. The assignments are broken down as follows:

1. Recursive descent parsing
2. Semantics and Symbol Table
3. Generation of LLVM IR
4. Implementation of Single Static Assignment
5. Basic LLVM optimization passes
6. Register allocation

In addition to these programming assignments, there are five written homework
assignments. These homework assignments will serve as a prologue to the
programming assignments. Thus, it is critical students finish these homework
assignments prior to beginning the corresponding programming assignment.

There is a midterm and a cumulative final exam.

Textbooks Engineering a Compiler (Second Edition). Cooper, Keith and Linda Torczon. ISBN-10:
012088478X.

2

Grading The course is graded with the following weights:

Programming Assignments (6% each) 36%
Homework (3% each) 15%
Midterm Exam 24%
Final Exam 25%
TOTAL POSSIBLE 100%

Grading Scale Letter grades will be assigned according to the following scale:
93%+ A
90-92% A-
87-89% B+
83-86% B
80-82% B-
77-79% C+
73-76% C
70-72% C-
69 D+
67-68 D
66 D-
65 and below F

Half percentage points will be rounded up to the next whole percentage. So for
instance, 89.5% is an A-, but 89.4% is a B+.

There is no curving. Students will receive the grade they earn. Extra credit is
generally not offered.

Policies Make-up policy for exams: To make up for a missed exam, the student must provide
a satisfactory reason (as determined by the instructor) along with proper
documentation. Make-up exams are only allowed under extraordinary and
emergency circumstances.

Late Homework: The homework will be due at the start of class on the designated
due date, and will not be accepted late, barring a documented emergency.

Late Programming Assignments: Students will be provided three “slip” days for the
entire semester. These slip days can be used one at a time or all at once. Upon
consumption of these slip days, students will be assessed a 25% penalty per day
late, for up to three additional days. After three additional days (past the slip days),
the program will no longer be accepted. In the case that all slip days have been
used, extensions will only be provided in the event of a documented emergency.

Software The programming assignments will use the free and open source LLVM framework.
The assignments support Windows, Mac OS X, or Linux, though Mac, if possible, is
the recommended development environment. Windows requires Cygwin to build
the projects, and debugging on Windows/Linux must be done through GDB. Mac,
however, supports debugging directly via Xcode.

3

Statement on

Academic Conduct
and Support

Systems

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast
in your own words – is a serious academic offense with serious consequences.
Please familiarize yourself with the discussion of plagiarism in SCampus in Section
11, Behavior Violating University Standards https://scampus.usc.edu/1100-
behavior-violating-university-standards-and-appropriate-sanctions/. Other forms of
academic dishonesty are equally unacceptable. See additional information in
SCampus and university policies on scientific misconduct,
http://policy.usc.edu/scientific-misconduct/.

Discrimination, sexual assault, and harassment are not tolerated by the university.
You are encouraged to report any incidents to the Office of Equity and Diversity
http://equity.usc.edu/ or to the Department of Public Safety
http://capsnet.usc.edu/department/department-public-safety/online-
forms/contact-us. This is important for the safety whole USC community. Another
member of the university community – such as a friend, classmate, advisor, or
faculty member – can help initiate the report, or can initiate the report on behalf of
another person. The Center for Women and Men http://www.usc.edu/student-
affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource
center webpage sarc.usc.edu describes reporting options and other resources.

Support Systems
A number of USC’s schools provide support for students who need help with
scholarly writing. Check with your advisor or program staff to find out more.
Students whose primary language is not English should check with the American
Language Institute http://dornsife.usc.edu/ali, which sponsors courses and
workshops specifically for international graduate students. The Office of Disability
Services and Programs
http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html
provides certification for students with disabilities and helps arrange the relevant
accommodations. If an officially declared emergency makes travel to campus
infeasible, USC Emergency Information http://emergency.usc.edu/ will provide
safety and other updates, including ways in which instruction will be continued by
means of blackboard, teleconferencing, and other technology.

A Further Note on
Plagiarism

In this class, all homework submissions will be compared with current, previous,
and future students’ submissions using MOSS, which is a code plagiarism
identification program. If your code significantly matches another student’s
submission, you will be reported to SJACS with the recommended penalty of an F in
the course.

It is okay to discuss solutions to specific problems with other students, but it is not
okay to look through another student’s code. It does not matter if this code is
online or from a student you know, it is cheating. Do not share your code with
anyone else in this or a future section of the course, as allowing someone else to
copy your code carries the same penalty as you copying the code yourself.

https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/
https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/
http://policy.usc.edu/scientific-misconduct/
http://equity.usc.edu/
http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us
http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us
http://www.usc.edu/student-affairs/cwm/
http://www.usc.edu/student-affairs/cwm/
http://sarc.usc.edu/
http://dornsife.usc.edu/ali
http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html
http://emergency.usc.edu/

4

Course Outline
W Date Topic(s) Reading/Due Dates

1
1/8 Intro; Compiler Basics; Scanning Ch. 1; Ch. 2 (§2.1-2.3)

1/10 Top-down parsing Ch. 3 (§3.1-3.3)

2
1/15 No class – MLK Day

1/17 Bottom-up parsing Ch. 3 (§3.4); HW1 Due in class

3
1/22 Semantic Analysis; Symbol Tables

Ch. 4 (§4.1-4.2); Ch. 5 (§5.5);

1/24 Intermediate Representations; LLVM IR
Ch. 5 (§5.1-5.3);
PA1 Due 1/26 @ 11:59PM

4
1/29 Generating Expressions and Control Flow Ch. 7 (§7.1-7.4; 7.8);

1/31 Arrays, Strings, Records/Structures
Ch. 7 (§7.5-7.7);
HW2 Due in class

5
2/5 Procedures and Calling Conventions Ch. 6 (§6.1-6.3); Ch. 7 (§7.9);

2/7 Object Oriented Languages
Ch. 6 (§6.4-6.6);
PA2 Due 2/9 @ 11:59PM

6
2/12 Static single-assignment, Part I “Simple and Efficient SSA”

2/14 Midterm Review

7
2/19 No class – President’s Day

2/21 Midterm exam

8
2/26 Basics of Optimization Ch. 8 (§8.1-8.4);

2/28 Basics of Data-flow Analysis; Dominators
Ch. 9 (§9.1-9.2.1)
PA3 Due 3/2 @ 11:59PM

9
3/5 Available Expressions; Live-variable analysis Ch. 9 (§9.2.2);

3/7 Code Motion; LLVM Opt Passes
Ch. 10 (§10.3); “Writing LLVM Opt
Passes”;

 Spring Break

10
3/19 Static single-assignment, Part II Ch. 9 (§9.3.4-9.3.6);

3/21 The Backend; Instruction Selection
Ch. 11; HW3 Due in class;
PA4 Due 3/23 @ 11:59PM

11
3/26 More Instruction Selection

3/28 Global Register Allocation Ch. 13 (§13.1-13.4);

12
4/2 More Register Allocation HW4 Due in class;

4/4 Instruction Scheduling
Ch. 12 (§12.1-12.3);
PA5 Due 4/6 @ 11:59PM

13
4/9 More Instruction Scheduling

4/11 Optimizing Compiler Case Studies

14
4/16 Interprocedural Analysis + Aliasing HW5 Due in class

4/18 TBD

15
4/23 TBD

4/25 Conclusion; Final review PA6 Due 4/27 @ 11:59PM

 Final Exam – Wednesday, May 2, 4:30-6:30PM

5

