Abstract
Quantum mechanics is the basis for understanding physical phenomena on the atomic and nanometer scale. There are numerous applications of quantum mechanics in biology, chemistry and engineering. Those with significant economic impact include semiconductor transistors, lasers, quantum optics and photonics. As technology advances, an increasing number of new electronic and opto-electronic devices will operate in ways that can only be understood using quantum mechanics. Over the next twenty years fundamentally quantum devices such as single-electron memory cells and photonic signal processing systems will become commonplace. The purpose of this course is to cover a few selected applications and to provide a solid foundation in the tools and methods of quantum mechanics. The intent is that this understanding will enable insight and contributions to future, as yet unknown, applications.

Prerequisites
Mathematics:
A basic working knowledge of differential calculus, linear algebra, statistics, and geometry.
Computer skills:
An ability to program numerical algorithms in MATLAB or similar language and display results in graphical form.
Physics background:
Should include a basic understanding of Newtonian mechanics, waves, and Maxwell’s equations.
Introduction: Lectures 1 - 5

Lecture 1-2

REVIEW OF CLASSICAL CONCEPTS
Extended discussion to include material from the book “Essential classical mechanics for device physics”.
The linear and nonlinear oscillator
Electromagnetism
Mechanical model of light-matter interaction due to Lorentz.

Lecture 3

TOWARDS QUANTUM MECHANICS – PARTICLES AND WAVES
Diffraction, interference, and correlation functions for light
Black-body radiation and evidence for quantization of light
Photoelectric effect
THE PHOTON PARTICLE
The existence of the photon particle
The photon at a beam splitter
Secure quantum communication

Lecture 4-5

WAVE-PARTICLE DUALITY
The link between quantization of photons and quantization of other particles
Diffraction and interference of electrons
When is a particle a wave?
THE SCHRÖDINGER WAVE EQUATION
The wave function description of an electron of mass m_0 in free-space
The electron wave packet and dispersion
The Bohr model of the hydrogen atom
Calculation of the average radius of an electron orbit in hydrogen
Calculation of energy difference between electron orbits in hydrogen
Periodic table of elements
Crystal structure
Three types of solid classified according to atomic arrangement
Two-dimensional square lattice, cubic lattices in three-dimensions
Electronic properties of semiconductor crystals
The semiconductor heterostructure

Using the Schrödinger wave equation: Lectures 6 - 7

Lecture 6-7

INTRODUCTION
The effect of discontinuities in the wave function and its derivative
WAVE FUNCTION NORMALIZATION AND COMPLETENESS
INVERSION SYMMETRY IN THE POTENTIAL
Particle in a one-dimensional square potential well with infinite barrier energy
NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION
Matrix solution to the discretized Schrödinger equation
Nontransmitting boundary conditions. Periodic boundary conditions

CURRENT FLOW
Current flow in a one-dimensional infinite square potential well
Current flow due to a traveling wave

DEGENERACY IS A CONSEQUENCE OF SYMMETRY
Bound states in three-dimensions and degeneracy of eigenvalues

BOUND STATES OF A SYMMETRIC SQUARE POTENTIAL WELL
Symmetric square potential well with finite barrier energy

TRANSMISSION AND REFLECTION OF UNBOUND STATES
Scattering from a potential step when effective electron mass changes
Probability current density for scattering at a step
Impedance matching for unity transmission

PARTICLE TUNNELING
Electron tunneling limit to reduction in size of CMOS transistors

THE NONEQUILIBRIUM ELECTRON TRANSISTOR

Scattering in one-dimension: The propagation method: Lectures 8 - 10

Lecture 8

THE PROPAGATION MATRIX METHOD
Writing a computer program for the propagation method

TIME REVERSAL SYMMETRY
CURRENT CONSERVATION AND THE PROPAGATION MATRIX

Lecture 9

THE RECTANGULAR POTENTIAL BARRIER
Tunneling

RESONANT TUNNELING
Localization threshold
Multiple potential barriers

THE POTENTIAL BARRIER IN THE δ-FUNCTION LIMIT

ENERGY BANDS IN PERIODIC POTENTIALS: THE KRONIG-PENNY POTENTIAL
Bloch’s theorem
Propagation matrix in a periodic potential
Real and imaginary band structure

Lecture 10

THE TIGHT BINDING MODEL FOR ELECTRONIC BAND STRUCTURE
Nearest neighbor and long-range interactions
Crystal momentum and effective electron mass

USE OF THE PROPAGATION MATRIX TO SOLVE OTHER PROBLEMS IN ENGINEERING

THE WKB APPROXIMATION
Tunneling
RELATED MATHEMATICS: *Lecture 14 - 15*

Lecture 14-15

ONE PARTICLE WAVE FUNCTION SPACE
PROPERTIES OF LINEAR OPERATORS
 - Hermitian operators
 - Commutator algebra

DIRAC NOTATION

MEASUREMENT OF REAL NUMBERS
 - Time dependence of expectation values. Indeterminacy in expectation value
 - The generalized indeterminacy relation

THE NO CLONING THEOREM

DENSITY OF STATES
 - Density of states of particle mass m in 3D, 2D, 1D and 0D
 - Quantum conductance
 - Numerically evaluating density of states from a dispersion relation
 - Density of photon states

The harmonic oscillator: *Lectures 17 - 18*

Lecture 17

THE HARMONIC OSCILLATOR POTENTIAL
CREATION AND ANNIHILATION OPERATORS
 - The ground state. Excited states

HARMONIC OSCILLATOR WAVE FUNCTIONS
 - Classical turning point

TIME DEPENDENCE
 - The superposition operator. Measurement of a superposition state

Lecture 18

 - Time dependence in the Heisenberg representation
 - Charged particle in harmonic potential subject to constant electric field

ELECTROMAGNETIC FIELDS
 - Laser light
 - Quantization of an electrical resonator
 - Quantization of lattice vibrations
 - Quantization of mechanical vibrations

Fermions and Bosons: *Lecture 19 - 20*

Lecture 19

INTRODUCTION
 - The symmetry of indistinguishable particles. Slater determinant
 - Pauli exclusion principle. Fermion creation and annihilation operators – application to tight-binding Hamiltonian

FERMI-DIRAC DISTRIBUTION FUNCTION
 - Equilibrium statistics
Writing a computer program to calculate the chemical potential and Fermi-Dirac distribution at finite temperature

BOSE-EINSTEIN DISTRIBUTION FUNCTION

CURRENT AS FUNCTION OF VOLTAGE BIAS

Semiconductor heterostructure diode structures in the depletion approximation.
Metal-insulator-metal.
Reduced dimensions

Lecture 20

PHOTON FOCK STATES

The Mandel effect
n-photons at a beam splitter
n-photons at a FP resonator

THE MANDEL EFFECT

Dual photon source
Fiber-optic beam splitter and delay line
Photon counting and correlation

Time dependent perturbation theory and the laser diode: *Lectures 21 - 23*

Lecture 21

FIRST-ORDER TIME-DEPENDENT PERTURBATION THEORY

Abrupt change in potential
Time dependent change in potential

CHARGED PARTICLE IN A HARMONIC POTENTIAL

FIRST-ORDER TIME-DEPENDENT PERTURBATION

FERMI’S GOLDEN RULE

IONIZED IMPURITY ELASTIC SCATTERING RATE IN GaAs

The coulomb potential. Linear screening of the coulomb potential
Correlation effects in position of dopant atoms
Calculating the electron mean free path

Lecture 22

EMISSION OF PHOTONS DUE TO TRANSITIONS BETWEEN ELECTRONIC STATES

Density of optical modes in three dimensions
Light intensity
Background photon energy density at thermal equilibrium
Fermi’s golden rule for stimulated optical transitions
The Einstein A and B coefficients
Occupation factor for photons in thermal equilibrium in a two-level system
Derivation of the relationship between spontaneous emission rate and gain

THE SEMICONDUCTOR LASER DIODE

Spontaneous and stimulated emission. Optical gain in a semiconductor. Optical gain in the presence of electron scattering

DESIGNING A LASER CAVITY

Resonant optical cavity. Mirror loss and photon lifetime
The Fabry-Perot laser diode. Rate equation models
Lecture 23

NUMERICAL METHOD OF SOLVING RATE EQUATIONS
The Runge-Kutta method. Large-signal transient response. Cavity formation

NOISE IN LASER DIODE LIGHT EMISSION
Effect of photon and electron number quantization
Langevin and semiclassical master equations

QUANTUM THEORY OF LASER OPERATION
Density matrix
Single and multiple quantum dot, saturable absorber

Time independent perturbation theory: *Lectures 24*

Lecture 24

NON-DEGENERATE CASE
Hamiltonian subject to perturbation W
First-order correction. Second order correction
Harmonic oscillator subject to perturbing potential in x, x^2 and x^3

DEGENERATE CASE
Secular equation
Two states
Perturbation of two-dimensional harmonic oscillator
Perturbation of two-dimensional potential with infinite barrier

Angular momentum, the hydrogenic atom, and bonds: *Lectures 25 - 26*

Lecture 25

ANGULAR MOMENTUM
Classical angular momentum
The angular momentum operator
Eigenvalues of the angular momentum operators L_z and L^2
Geometric representation

SPHERICAL HARMONICS AND THE HYDROGEN ATOM
Spherical coordinates and spherical harmonics
The rigid rotator
Quantization of the hydrogenic atom
Radial and angular probability density

Lecture 26

ELECTROMAGNETIC RADIATION
No eigenstate radiation
Superposition of eigenstates
Hydrogenic selection rules for dipole radiation
Fine structure

BONDS.
The hydrogen molecule ion.
The hydrogen molecule covalent bond
Valence bond description.
Molecular orbital description
The ionic bond