ASTE 580 (Orbital Mechanics I) - Fall 2017

Course Syllabus

Instructor: Dr. Ryan Park
Class Location: RTH 109
Time: Wednesday, 6:40-9:20 PM
E-Mail: Ryan.S.Park@jpl.nasa.gov
Please include “ASTE580” in the subject.
Course Website: https://courses.uscden.net
Teaching Assistant: Daniel Depew (ddepew@usc.edu)
Office Hours: TBD
Office Hour Phone Number: TBD

Required Text

Prerequisites

Graduate standing in engineering or science
Proficient in programming (e.g., Matlab, PYTHON)
ASTE 480 (Spacecraft Dynamics)

Course Objective

Orbital mechanics is the basis for spacecraft mission design and is a key component of spacecraft engineering and operations. The basic principles of orbits and astrodynamics informs the designer with options for selecting orbits, maneuvers, and mission profiles that impact the eventual spacecraft design. Understanding orbit perturbations, trajectories, and maneuver needs guides the mission planner with selecting optimal orbit maintenance, rendezvous, and transfers to accomplish the ultimate goals of the mission. This information will then be used by the spacecraft and subsystem engineers to ensure that the spacecraft design can
satisfy those requirements and achieve mission success. Once a spacecraft is on orbit, orbital mechanics is the foundation for tracking, orbit determination, and computing orbit corrections.

The goal of this course is to provide the student with an understanding of the basic theory, practices, and applications of orbit mechanics. It combines the foundational principles of algebra, geometry, and physics to describe the motion of objects to, in, and from space.

At the end of the course, the student should have mastered the basic principles of an object in orbit around a central body, effects of other forces on objects in orbit, and the means for changing orbits. These fundamentals will enable the student to learn and master almost any orbit analysis related problem that they will encounter during their professional lives.

Course Topics

This course covers standard concepts and methods applicable to practical and realistic astrodynamics problems. Topics include: the two-body problem, Keplerian orbits, the N-body problem, transfer orbits, planetary equations of motion, and numerical integration. Other topics as time permits.

Grading

- Homework (a total of 7): 35%
- Midterm (TBD): 30%
- Final (TBD): 35%

Weekly schedule

Note: all assignments are due at 6:40 pm (for both DEN and on-campus students). On-campus students must submit before the class starts. DEN students must submit to the DEN office before the class starts. Late homework will not be accepted.

- Week 01 (08/23)
- Week 02 (08/30)
- Week 03 (09/06): Homework 1 due
• Week 04 (09/13)
• Week 05 (09/20): Homework 2 due, No class (a make-up class will be given TBD)
• Week 06 (09/27):
• Week 07 (10/04): Homework 3 due
• Week 08 (10/11): Midterm exam
• Week 09 (10/18): Homework 4 due
• Week 10 (10/25)
• Week 11 (11/01): Homework 5 due
• Week 12 (11/08)
• Week 13 (11/15): Homework 6 due
• Week 14 (11/22): No class (Thanksgiving)
• Week 15 (11/29): Homework 7 due
• Week 16 (12/06): Final exam

Miscellaneous

• No class on September 20. A make-up class will be given on a (TBD) date.

References