AME 302: Dynamic Systems

Lecture: Tue, Th 9:30-10:50
Discussion F 10-11:50
Instructor: H. Flashner
Office: Olin Hall 430E
Phone: (213) 740-0489
Office hours: Tue, Th 11am-1pm
email hflashne@usc.edu

Teaching Assistant: Yohanna Hanna
email: yhanna@usc.edu
Office: VHE 202
Office hours: TBD

Homework: Will be assigned *every* Thursday and will be due *the following* Thursday

Grading: The final grade will be according to the following formula:

- Homework: 20%
- Project: 10%
- Midterm 1: 15%
- Midterm 2: 15%
- Final (December 7): 40%

References:

Course Outline

1. Introduction (Chapter 1)
 (a) Input-output relations
 (b) Dynamic systems
 (c) Classes of dynamic systems
 i. Mechanical systems
 ii. Electrical systems
 iii. Electro-mechanical systems
 iv. Fluid and hydraulic systems
 v. Heat transfer systems

2. Review of Mathematical Methods (Chapter 2)
 (a) Solution of Ordinary Differential Equations in Time
 i. Homogeneous and particular solution
 ii. Variation of parameters
 (b) Laplace Transform
 i. Complex numbers
 ii. Laplace transform of elementary functions
 iii. Characteristics of Laplace transform
 iv. Inverse Laplace transform
 A. Partial fractions
 v. Solution of ODE’s using Laplace transform
 (c) Transfer function representation of dynamical systems
 (d) System response using MATLAB

3. Mechanical Systems (Chapters 3 and 4)
 (a) Newton’s laws
 i. Newton’s laws for translational motion
 ii. Newton’s second law for rotation about a fixed axis
 (b) General planar motion
 (c) Spring elements
 (d) Damping elements
 (e) Modeling Flexible systems

4. Representation and Simulation of Dynamic System (Chapter 5)
(a) Block diagram representation
(b) State-variable representation
(c) Simulation using MATLAB
 i. Linear models
 ii. Nonlinear models
(d) Simulation using SIMULINK
 i. Linear models
 ii. Nonlinear models

5. **Electrical and Electromechanical Systems (Chapter 6)**
 (a) Electrical elements
 (b) Kirchoff’s laws
 (c) Operational amplifiers
 (d) Electrical motors

6. **Fluid and Thermal Systems (Chapter 7)**
 (a) Fluid level systems
 (b) Hydraulic systems
 (c) Thermal systems

7. **System Analysis in Time Domain (Chapter 8)**
 (a) Response of first-order system
 (b) Response of second-order system
 (c) Specifications of step response
 (d) Parameter estimation in time-domain

8. **System Analysis in Frequency Domain (Chapter 9)**
 (a) Response of linear system to harmonic input
 (b) Interpretation of frequency response
 (c) Asymptotic approximation of frequency response
 (d) System identification if frequency response