SSCI 583 (Section 35700), Spatial Analysis

Syllabus

Units: 4

Term- Day-Time: Spring, 2016

Location: Online, via Blackboard

Instructor: Dr. Su Jin Lee
Office: AHF B55K
Office Hours: Mondays and Wednesdays, 9-10 a.m. PT, and by appointment at other times. I am always available asynchronously via email. I am also available for synchronous chats via phone or Skype or IM text, audio or video most days and times by prior arrangement via email. Or we can meet in my Bluejeans room. Just get in touch!

Contact Info:
Email: sujinlee@usc.edu
Blue Jeans: www.bluejeans.com/sujinlee
Skype: sujinlee93
Office: 213-740-2845

GIS Library Help: Katharin Peter
Office: VKC B40a
Office Hours: By appointment
Contact Info:
Email: kpeter@usc.edu
Office: 213-740-1700

IT Help: Richard Tsung
Office: AHF B57B
Hours of Service: Mondays to Fridays, 9-5 p.m. PT
Contact Info:
Email: GISTsupport@usc.edu
Office: 213-821-4415
Course Scope and Purpose
Spatial analysis is key to the successful application of GIS to today's difficult and critical environmental and social challenges. While digital mapping technologies such as Google Maps, Google Earth and Microsoft's Bing Maps are now in widespread general use, GIS only reaches its full potential when the power of spatial analysis is engaged. While the consumer oriented mapping tools are simple and intuitive for most people to use, spatial analysis requires a much deeper awareness of the underlying assumptions and methods. In fact, the easy access to very advanced spatial analytical tools in today’s GIS is deceptive as it is fairly simple to walk through wizards and push buttons to perform an analysis, but much more difficult to produce a valid, defensible analytical result. Helping you become an informed spatial analyst is the goal of this course.

This course aims to provide students with the knowledge and skills necessary to investigate the spatial patterns which result from social and physical processes operating on or near the Earth’s surface. Essential theoretical concepts of quantitative geography are examined, including measures of geographical distribution (including point and areal pattern analysis) and spatial autocorrelation, interpolation and network connectivity. The focus is on understanding the theories and context of spatial analysis so that you are equipped to find and apply the best analytical tool for your problem and to correctly and appropriately interpret and present your results. Since proficient spatial analysis requires imaginative application of a myriad of available tools, there are far more tools and techniques available than we can possibly cover in a single course. Therefore, practical assignments in this course are not intended to provide comprehensive training in any of the wide range of available tools, but rather to develop skills that will help you find, understand and use the multitude of tools and, importantly, the related learning resources when you need them in the future.

Learning Objectives
When you have completed this course, you will be able to:

- Plan, design and implement a spatial analysis project demonstrating the ability to select, apply and critically interpret appropriate methods for the analysis of geographical information.
- List several different approaches to spatial analysis and differentiate between them.
- Outline the geographic concepts of distance, adjacency, interaction and neighborhood and discuss how these are fundamental in performing spatial analysis.
- Explain how point patterns, including clustering, can be identified and understood as realizations of spatial processes.
- Apply appropriate spatial references (datum and projection) to spatial data before undertaking analysis.
- Outline the central role that spatial autocorrelation plays in spatial analysis and explain how it helps and hinders the use of current tools.
• Demonstrate how different concepts about nearness and neighborhoods result in a variety of interpolation methods that produce different results.
• Outline the various ways that overlay is implemented in GIS.
• List several emerging geographical analysis techniques using temporal and 3D analysis.

Course Structure
The main theoretical concepts are provided through a directed reading of the text Geographic Information Analysis. The course reader will emerge as a collection of reading notes that provide the basis for an informed review of most chapters. Additional readings will be assigned to expand on the text when needed. The course will generally unfold on a biweekly basis. When possible, assignments will be given in advance, but usually they will be posted on or before Mondays. Practical exercises utilize published tutorial materials using ArcGIS and a final project allows students to demonstrate their ability to apply spatial analytical tools in an appropriate, informed manner.

Workload – This is a four credit, one semester course. Students should expect to spend 10-15 hours per week completing the work in this course.

Technological and Communication Requirements
ArcGIS is provided online via the GIST Server; hence, you do not need to install it on your own computer. Instead, every student must have the following technology requirements:

• A computer with a fast Internet connection.
• A functional webcam and a microphone for use whenever a presentation or meeting is scheduled.
• A current web browser, Firefox recommended, to access the GIST Server

GIST Server and Tech Support – This course utilizes the SSI GIST Server which is a virtual desktop giving access to many different professional software. If you are unable to connect to the server or experience any type of technical issues, send an email using your USC account to GIST Tech Support at gistsupport@dornsife.usc.edu, making sure to copy (cc) me on the email. GIST Tech Support is available Monday through Friday, 9am-5pm PT.

Communications – This is a distance learning course, so most of our interactions will be asynchronous (not at the same time). All materials to be handed in will be submitted via the Blackboard Assessment link. I will also create Blackboard discussion forums throughout the semester that we will use for the aforementioned assignments and so we can discuss issues and comments on the course assignments, exercises, and projects as the need arises.

I will send via email through Blackboard any notices that are time sensitive. Please be sure that you read as soon as possible all email sent from Blackboard or from me. Check now to make sure that email sent from both the USC Blackboard accounts and
my private domain (sujinlee@usc.edu or sujinlee@dornsife.us.edu) does not go into your junk mail.

While I am usually online and will probably respond to emails from students relatively quickly, I will endeavor to respond to all email within 24 hours of receipt, aiming for no more than 48 hours delay. In the rare case when I expect to be offline for more than 72 hours, I will post an announcement on the Blackboard site. That said, it is each student's responsibility to stay informed about what is going on in our course. In addition to email about time-sensitive topics, any important announcements will be posted on the Announcement page in Blackboard. Be sure to check these each time you log onto Blackboard.

Discussion boards – On the Blackboard site, I will post a series of discussion threads relevant to various sections of the course. Discussions provide a key means for student-to-student discussion and collaboration that can replicate the face-to-face contact you may have experienced in traditional classrooms. Here students can provide support to each other while working on your assignments, sharing hints and helpful tips, as you would in a classroom laboratory. Please post your questions about assignments there, as you would ask them publically in the classroom. I monitor the discussion threads and offer comments when necessary, but more importantly, consider the discussion board a key way to connect with your classmates and share your discoveries.

Required Readings and Supplementary Materials
The required textbooks for this course are:

The practical Mitchell books are useful in association with the theoretical text as a means of bringing theory into a working context. Used copies of these books are widely available on-line, so there is no need to pay the full retail price.

Supplementary readings will be assigned from various sources including:

As well, for several of the assignments in this course, you will conduct online library research to find articles that apply specific techniques in an application area of your choice.

Description and Assessment of Assignments

Weekly Assignments

There are several different kinds of assignments with at least one due weekly. These are described in the Weekly Folders on Blackboard. Due dates are shown in the summary that follows.

- **Resume Assignment – 1 worth 2 points.** We require all current students to post and maintain a public resume, short biography and recent photo on our shared GIST Student Community Blackboard site. Please prepare your resume in the SSI template which will be provided to you. Unless you opt out, your resume will be included in the Spatial Sciences Institute Graduate Programs Resume Book. This resume book is compiled annually and, along with our web presence, is used to promote our programs, and more importantly, your skills, experience and professional aspirations.

- **Tutorials 1, 3, 4, 5, 6 and 7 – 6 worth a total of 12 points.** Due in the weeks between Reading Assignments, hands-on Tutorials from the Esri tutorial collection will be used to practice the techniques explored in theory in the text. At the completion of each tutorial, you will prepare a brief written report to demonstrate that you have completed it.

- **Tutorial 2 – 1 worth 6 points.** Tutorial 2 is more substantial than the other tutorials, requiring more thought and effort.

- **Reading Assignments – 6 worth a total of 36 points.** These will focus on the text and other assigned readings. One will be due every other week. Their objective is to help you evaluate and integrate the information you have acquired from the course readings. Some of these will involve discussions and collaborative work, most will be individual efforts.

- **Final Discussion – 1 worth 2 points.** To make sure you take a moment to reflect on all that you have learned in the course, before the last day of the course, you will share through a discussion board posting your observations on what you feel are the most important things you have learned in this course.

Final Project

To integrate your learning of all the material covered in the course, in the final project you will design, undertake and report on an individually chosen spatial analysis project that will be the context of discussion in several of the assignments. The four project components will be due at different times during the term to build gradually on the
material presented in the course. All points for project components will be assigned using a grading rubric provided at the time the project assignment is posted. The four components of the Project are:

- **Proposal - 2 points.** A brief description of the spatial question(s) you would like to ask or the spatial problem you want to solve and briefly how you plan to solve it.
- **Data Report - 10 points.** A draft of the section of your final report that discusses the data you will use and the exploration of that data that you have already completed.
- **Presentation -10 points.** A presentation made on-line via Blue Jeans, open to all students in the course
- **Project Report - 20 points.** A written report on your project methodology and outcomes.

Grading Breakdown

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Number</th>
<th>Points Per Assignment</th>
<th>% of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Assignments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resume Assignment</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Reading Assignments</td>
<td>6</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Tutorial 2</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Tutorials 1,3,4,5,6,7</td>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Final Discussion</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Project Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Data Report</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Presentation</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Final Report</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Assignment Submission Policy

Unless otherwise noted, assignments must be submitted via Blackboard by the due dates specified in the Course Schedule below and on the assignment instructions.

Unless otherwise noted, all Reading Assignments and Tutorials are **due by 11:59 pm Pacific Time (PT) on Mondays.** Project components have different due dates as indicated on the Course Schedule below. Your attention to on-time assignment submission is essential if I am to meet my goal to return comments on your submitted assignments before the next one is due. Sometimes this is impossible, so I will post a notice on anticipated delays if needed.
Additional Policies

Students are expected to attend and participate in every class session and to complete and upload all assignments no later than 11:59 p.m. PT on the deadlines detailed in the Course Schedule. Late work will be assessed a penalty of 10% per day and zero grades will be assigned for work that is more than seven days late.

Course Schedule: A Weekly Breakdown

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics/Daily Activities</th>
<th>Readings and Assignments</th>
<th>Deliverables/Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11</td>
<td>Introduction to Class</td>
<td>SSCI 583 Syllabus Course Notes Resume Assignment Tutorial 1: Introduction</td>
<td>No deliverables.</td>
</tr>
<tr>
<td>1/19*</td>
<td>Introduction to GI Analysis and Spatial Data</td>
<td>Course Notes Reading Assignment 1: O’Sullivan & Unwin: Preface, Ch 1&2 Mitchell, Vol. 1: Ch 1&2</td>
<td>Resume Assignment: Tuesday, 1/19 Tutorial 1: Tuesday, 1/19</td>
</tr>
<tr>
<td>1/25</td>
<td></td>
<td>Tutorial 2: MAUP</td>
<td>Reading Assignment 1: Monday, 1/25</td>
</tr>
<tr>
<td>2/1</td>
<td>Maps for Spatial Analysis and Spatial Processes</td>
<td>Course Notes Reading Assignment 2: O’Sullivan & Unwin: Ch 3&4</td>
<td>Tutorial 2: Monday, 2/1</td>
</tr>
<tr>
<td>2/8</td>
<td></td>
<td>Tutorial 3: Fundamentals ArcGIS Documentation</td>
<td>Reading Assignment 2: Monday, 2/8</td>
</tr>
<tr>
<td>2/16*</td>
<td>Point Pattern Analysis</td>
<td>Course Notes Reading Assignment 3: O’Sullivan & Unwin: Ch 5&6 De Smith et al.: various</td>
<td>Tutorial 3: Tuesday, 2/16</td>
</tr>
<tr>
<td>3/7</td>
<td></td>
<td>Reading Assignment 4 (Q3 & Q4) Tutorial 5: Regression</td>
<td>Reading Assignment 4 (Q3&4): Monday, 3/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/14</td>
<td>Spring Recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/21</td>
<td>Spatial Interpolation</td>
<td>Course Notes Reading Assignment 5: O’Sullivan & Unwin: Ch 9&10 Fisher and Tate 2006</td>
<td>Reading Assignment 4 (Q3&4): Monday, 3/21 Tutorial 5:</td>
</tr>
</tbody>
</table>
Statement on Academic Conduct and Support Systems

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards http://studentaffairs.usc.edu/scampus/. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu or to the Department of Public Safety http://dps.usc.edu/. This is important for the safety of the whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage http://sarc.usc.edu describes reporting options and other resources.
Support Systems
A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://ali.usc.edu, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs https://dsp.usc.edu provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.

Resources for On-line Students
Our course Blackboard site provides links to several different resources that you may need. In particular, you will be making frequent use of the on-line USC Library that is available to all registered students through the link http://www.usc.edu/libraries. Once on this site, you can find additional resources for distance students under the link “Library Services”. Many other resources and links to key people you may need to contact are also listed on the Blackboard site under Other Resources and Contacts.