Overview
This course provides an overview of the field of Artificial Intelligence: foundations of symbolic intelligent systems, search, logic, knowledge representation, planning, learning. The syllabus is subject to change at the discretion of the course professors.

Prerequisite
Recommended preparation: good programming and algorithm analysis skills.

Lectures
5:00pm - 6:20pm on Tuesdays and Thursdays in SGM 123

Discussions

<table>
<thead>
<tr>
<th>Monday</th>
<th>12:00-12:50pm</th>
<th>KAP140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>1:00-1:50pm</td>
<td>KAP140</td>
</tr>
<tr>
<td>Monday</td>
<td>5:30-6:20pm</td>
<td>GFS207</td>
</tr>
<tr>
<td>Monday</td>
<td>6:30-7:20pm</td>
<td>GFS207</td>
</tr>
<tr>
<td>Thursday</td>
<td>6:30-7:20pm</td>
<td>KAP140</td>
</tr>
<tr>
<td>Thursday</td>
<td>7:30-8:20pm</td>
<td>KAP140</td>
</tr>
<tr>
<td>Friday</td>
<td>2:00-2:50pm</td>
<td>OHE136</td>
</tr>
<tr>
<td>Friday</td>
<td>5:00-5:50pm</td>
<td>KAP146</td>
</tr>
<tr>
<td>Friday</td>
<td>11:00-11:50am</td>
<td>KAP158</td>
</tr>
<tr>
<td>Friday</td>
<td>12:00-12:50pm</td>
<td>KAP158</td>
</tr>
</tbody>
</table>

Exams
5:00pm - 6:20pm on February 16, March 29, and April 28.

Textbook
3rd Edition
See also http://aima.cs.berkeley.edu/ for additional resources including
Code http://aima.cs.berkeley.edu/code.html
Demos http://aima.cs.berkeley.edu/demos.html

Professors
Ning Wang, PhD (nwang@ict.usc.edu)
David V. Pynadath, PhD (pynadath@usc.edu)
Sheila Tejada, PhD (discussions) (stejada@usc.edu)

Teaching Assistants
Matthias Hernandez (mthernan@usc.edu)
Jing Huang (huang10@usc.edu)
Ali Jalal-Kamali (jalalkam@usc.edu)
Daniel Link (dlink@usc.edu)
Guan Pang (gpang@usc.edu)
Om Prasad Patri (patri@usc.edu)
Kan Qi (kqi@usc.edu)
Bo Wang (wang736@usc.edu)

Office Hours
Ning Wang, David V. Pynadath:
3:30pm - 4:30pm on Tuesdays before lecture (SAL 213).
Sheila Tejada:
Mon 3:00 – 5:00pm, Thur 1:00 – 3:00pm, Fri 3:00 – 5:00pm, in SAL 316
TAs' office hours:
Mon: 2:00pm - 3:00pm (Om Prasad Patri, EEB 226)
Mon: 3:00pm - 4:00pm (Bo Wang, SAL Lab)
Tue: 12:30pm - 2:30pm (Guan Pang, SAL Lab)
Wed: 11:00am - 1:00pm (Jing Huang, SAL Lab)
Wed: 1:00pm – 2:00pm (Kan Qi, SAL Lab)
Fri: 12:00pm - 2:00pm (Matthias Hernandez, SAL Lab)
Grading
Grades for this course will be based on performance on homework and exams.

- Homework 1: 5%
- Homework 2: 10%
- Homework 3: 10%
- Exam 1: 25%
- Exam 2: 25%
- Exam 3: 25%

Based on previous semesters, we expect that letter grades for this course will follow this scale. Final letter grades for this course are entirely at the discretion of the course professors.

- 85% or higher : A
- 80-85% : A-
- 75-80% : B+
- 70-75% : B
- 65-70 : B-
- 60-65% : C+
- 55-60% : C
- 50-55% : C-

Reading Assignments
Readings from the book contain theoretical concepts, examples and usable code that will be very helpful for all the work in this course.

Homework Assignments
There will be three homework assignments, which may consist of programming problems, open-ended essay questions, and questions representative of those that will appear on course exams. Programming problems may require the use of a specific programming language.

Course Exams
There will be three in-class exams for this course, covering material presented in course lectures, discussion sections, homework assignments, and assigned readings.
Learning Management System

This course will make extensive use of the online learning management system, DEN@Viterbi. Students will submit all homework assignments via this system. This system will also be used to provide online discussion forums where students can discuss topics with their peers, the teaching assistants, and course instructors. DEN@Viterbi can be found online at: https://courses.uscden.net/d2l/login

Statement for Students with Disabilities

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me or the TA as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m. – 5:00 p.m., Monday through Friday. The phone number for DSP is (213) 740-0776.

Statement on Academic Integrity

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected to understand and abide by these principles. The Student Guidebook, SCampus (http://scampus.usc.edu/), contains the University Student Conduct Code (see University Governance, Section 11.00), while the recommended sanctions are located in Appendix A.

Emergency Preparedness/Course Continuity in a Crisis

In case of a declared emergency if travel to campus is not feasible, USC executive leadership will announce an electronic way for instructors to teach students in their residence halls or homes using a combination of DEN@USC, teleconferencing, and other technologies. See the USC website (http://preparedness.usc.edu/) on Campus Safety and Emergency Preparedness.