Corequisites

EE 503, Probability for Electrical and Computer Engineers
EE 441, Applied Linear Algebra for Engineering
Corequisites may be waived by passing the corresponding placement exam

Prerequisite: Basic familiarity with Matlab.

Date, time, location

Lecture: MW 3:30-4:50 PM, OHE 132 (and over DEN@Viterbi)
Discussion: Th 5:00-5:50 PM, OHE 132 (and over DEN@Viterbi)

Course Description (catalog): Distribution free classification, discriminant functions, training algorithms; statistical classification, parametric and nonparametric techniques; artificial neural networks.

Course Description (extended): Mathematical pattern recognition can be defined as: the categorization of input data into identifiable classes, via the extraction of significant features or attributes of the data, using mathematical techniques¹. This course covers concepts and algorithms for pattern recognition, with an emphasis on pattern classification and decision theory, incorporating machine learning techniques. The course will stress an understanding of different algorithms at both theoretical and practical levels, as well as their advantages and disadvantages. Topics include: statistical classification and learning (Bayesian, parametric, and nonparametric); distribution free classification and learning (e.g., perceptron, pseudoinverse/least squares, and support vector machines); artificial neural networks for pattern recognition. Treatment will include a sampling of relevant classical techniques, underlying fundamentals, and current techniques. The course will include a moderately sized course project in the second half of the semester using Matlab toolboxes, to give the student an opportunity to apply concepts from class to real-world data.

¹. Definition is adapted from Tou and Gonzalez, *Pattern Recognition Principles*.]
Administrative Information

• General information about USC’s Distance Education Network program for graduate courses and degrees: http://gapp.usc.edu/graduate-programs/den

EE 559 Course Materials (lecture notes, handouts, and homeworks)

• The main web site for all course materials can be accessed from: www.uscden.net

• Course materials (lecture notes, course notes, handouts, homework assignments, etc.) will be available to all registered students at this site. Live lecture broadcasts and video archives of lectures can also be accessed from this site.

• Daily lecture notes (written out in real time during lecture) will be available after class, at the same web site (please allow 24 hours after each class for posting). Class notes for some lectures will be prepared in advance and will be available on the web site.

Course Texts

• Optional texts: C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)

Computer Packages and Languages

• You will use a Matlab and a Pattern Classification toolbox for some of the homework problems and for the course project(s). Access to Matlab is provided on campus and can be downloaded by all registered students at: software.usc.edu. The Matlab “Pattern Classification” toolbox can be downloaded from the Wiley website, using a URL and password given in the computer manual listed above. Other toolboxes (freely downloaded) will also be available for the course project.

• For some computer homework problems and portions of the computer project, you will need to generate your own code rather than using the Matlab toolbox. For this, you can use any language you are comfortable with, including Matlab.

Homework, Exams, and Grading

• Homeworks (throughout semester) 20%
• Course project 25%
• Midterm exam (either Wed., 3/4, or Wed., 3/11; 3:30-4:50 PM) 25%
• Final exam (Friday, May 8, 2015, 2:00 - 4:00 PM PDT) 30%

Collaboration on assignments in this class

Collaboration on techniques for solving homework assignments and computer problems is allowed, and can be helpful; however, each student is expected to work out, code, and write up his or her own solution. Use of other solutions to homeworks, computer problems, or computer projects, from any source including other students, before the assignment is turned in, is not permitted. Of course, collaboration on exams is not permitted. Please also see the last page of this syllabus for additional policies that apply to all USC classes.
Course Outline

1. Introduction
 • Basic concepts in pattern recognition
 • A paradigm for pattern recognition

2. Distribution-Free Classification
 • Classifier design - different techniques
 – Discriminant functions
 – Linear, nonlinear
 – 2-class, multiclass
 • Training algorithms for supervised learning
 – Perceptron
 – Pseudoinverse/ minimum mean-squared error
 – Support vector machine
 – Others*

3. Statistical Classification
 • Statistics are known: Bayes decision theory
 – Optimal solutions for minimum-error and minimum-risk criteria
 • Statistics are partially known: Parameter estimation
 – Maximum Likelihood, Maximum A Posteriori, Bayesian Estimation
 • Statistics are unknown: Nonparametric techniques
 – Histogram, Parzen Windows, k-Nearest Neighbor classification
 – Techniques for reducing data and computational complexity
 • Supervised learning

4. Validation and data reduction
 • Validation and cross-validation
 • *Feature selection and reduction

5. Artificial Neural Networks
 • Single layer networks
 • Multiple layer networks
 • Supervised learning
 • Capabilities and limitations

* Coverage depends on time available and student interest
Sample Applications of Pattern Recognition

• Remote Sensing
 – Environment monitoring
 – Exploration of other planets
 – Water, crop, and forest resource management

• Fingerprint Identification

• Text
 – Optical character recognition
 – Categorization of topics from text

• Speech Recognition

• Image Analysis
 – Object recognition (from pictures)
 – Flexible and adaptive industrial automation
 – Robotics
 – Autonomous vehicle guidance

• Signal Analysis
 – Radar and sonar
 – Seismic
 – Communications

• Multimedia
 – Recognition of objects, actors, words, or voices in video clips or movies

• Human-Computer Interface
 – Face, expression, and gesture recognition
 – Recognition of objects in a scene (e.g., hand against background)
 – Recognition of brain signals acquired for brain-computer interface

• Biomedical and bioinformatics
 – Gene analysis
 – DNA sequencing
 – Analysis of large amounts of data
 – EKG, EEG, CT, MRI, fMRI, PET, NIRS data

• Finance
 – Investments, including stock market analysis and prediction
 – Economic analysis (economic indicators)
 – Banking (loan risk, signature verification)
Contact Information

Instructor: Prof. B. Keith Jenkins, EEB 404A
Phone 213-740-4149; fax: 213-740-6618
Email: jenkins@sipi.usc.edu (please include “EE 559" in the subject line)
Office hours: Tu Th 3:30 - 5:00 PM.

T.A.: TBA

Grader: TBA

Distance Education Network (DEN@Viterbi) students:

For help with DEN@Viterbi web site access, transferring of course materials (e.g., turning in and receiving homeworks from remote sites), and viewing downloaded files and viewing video lectures, consult the help function and service/contact info on the DEN web sites:

www.uscden.net and gapp.usc.edu/graduate-programs/den .

Some of the contact information is listed below for your convenience:

General technical problems webclass@usc.edu 213-821-1321
(online services, webcasts, software)

General administrative problems denadmin@usc.edu 213-740-4488

Master Control networkcontrol@den.usc.edu 213-740-0130
(Class broadcasting, classroom telephones)

Exams and proctoring: denexam@usc.edu 213-821-3136

Homework submissions, records, and delivery (remote students): denhw@usc.edu 213-740-9356
Fax submission: 213-740-9121
Statement on Academic Conduct and Support Systems

Academic Conduct

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu or to the Department of Public Safety http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety of the whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage http://sarc.usc.edu describes reporting options and other resources.

Support Systems

A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.