AME 451 Syllabus - Spring 2015

Instructor: Prof. Néstor O. Pérez-Arancibia (perezara@usc.edu)

Class Formal Name: Linear Control Systems I
Instructor Phone Number: 310-384-0123
Lecture Time: Mondays and Wednesdays, 11:00AM-12:20 PM
Lecture Location: OHE 132
Instructor Office Hours: Mondays, 2:00-4:00 PM (OHE 430-I). DEN students can connect via Skype (Mondays, 2:00-4:00PM CA time).

Teaching Assistant: Shibing Liu (shibingl@usc.edu).
TA Office Hours: Tuesdays 1:00-4:00 PM and Thursdays 1:00-4:00 PM. DEN students can connect via Skype (1:00-4:00 PM and Thursdays 1:00-4:00 PM CA time).

Formal Prerequisite: AME 302 (Dynamic Systems); MATH 245 (Mathematics of Physics and Engineering).

Recommended Prerequisites: Linear Algebra; Differential Equations; Signals & Systems; Basic Programming using MATLAB® and SIMULINK®.

Other References (Not Officially Required):

Course Objectives:
The course discusses the fundamental topics of classical control engineering upon which modern control theory has been developed, such as, plant modeling, classical SISO LTI controller design in the time and frequency domains, stability, stability robustness, performance robustness, and real-time control implementation.
Grading:
- 5% Quiz #1 (February 4, 2015 at 11:00AM in class)
- 5% Quiz #2 (April 22, 2015 at 11:00AM in class)
- 10% Homework
- 20% Midterm Exam #1 (February 25, 2015 at 11:00AM in class)
- 20% Midterm Exam #2 (April 1, 2015 at 11:00AM in class)
- 40% Final Exam (May 6, 2015, 11:00AM - 1:00PM)

Homework:
Homework is assigned weekly on Wednesdays by 11:59 PM, CA time, and due on Wednesdays of the following week at 11:59 PM, CA time. Please check the DEN blackboard regularly for homework updates addressing questions and comments from students in the class. Late submissions will not be graded and will receive a score of 0 (zero). While working on your homework you are allowed to talk to the teaching assistant (TA) and your classmates. Also, it is allowed to look at material on-line such as Wikipedia. However, you must write down your own solutions, using your own words. Therefore, copy-and-pasted solutions from other sources (classmates, books, on-line material, etc.) will be considered an academic integrity violation.

During the semester, 14 (fourteen) weekly homework assignments will be given. Each weekly assignment will have at least 100 achievable points so that at the end of the semester the aggregated amount of achievable points will be at least 1400 (one thousand four hundred). A thousand (1000) points are required for a 100% of the homework credit.

Midterm and Final Exams:
The Quizzes, Midterm Exams and Final Exam are open-book/open-notes. Talking on the phone, texting, emailing, communicating in any way with other people or similar activities are not allowed during the tests. You should bring your own exam booklet (or paper). The policy regarding the use of calculators, laptops and MATLAB® is contingent to the specific situation and will be announced in class.

Academic Integrity:
All cases of academic integrity violation will be referred by a written report to the Student Judicial Affairs and Community Standards (http://www.usc.edu/student-affairs/SJACS/). The typical penalty recommended by SJACS is a grade of F for the course. Also, see Appendix in page 5.

Computer Software:
MATLAB® and SIMULINK®, which can be downloaded from the USC IT website. These are computer tools required for solving some of the homework questions and take-home exam questions.
Programmed Lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>References</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 1 | Mon. Jan. 12 | • The notion of feedback
 • Motivating examples | Slides; Ch01 in [1] | |
| 1 | Wed. Jan. 14 | • Dynamic models of systems — Part 1 | Slides; Ch02 in [1] | HW #1 (A) |
| 2 | Mon. Jan. 19 | MLK’s Day | | No Class Scheduled |
| 2 | Wed. Jan. 21 | • Dynamic models of systems — Part 2 | Slides; Ch02 in [1] | HW #2 (A); HW #1 (D) |
| 3 | Mon. Jan. 26 | • Laplace transform, transfer functions, time response
 • Laplace transform properties — Part 1 | Slides; Ch03 in [1] | |
| 3 | Wed. Jan. 28 | • Laplace transform properties — Part 2 | Slides; Ch03 in [1] | HW #3 (A); HW #2 (D) |
| 4 | Mon. Feb. 2 | • Laplace transform properties — Part 3
 • Introduction to state-space representation of systems | Slides; Ch03 in [1] | |
| 4 | Wed. Feb. 4 | • Quiz #1
 • Effect of poles on the dynamic response
 • Effect of zeros on the dynamic response | Slides; Ch03 in [1] | HW #4 (A); HW #3 (D) |
| 5 | Mon. Feb. 9 | • Performance specifications for 1st and 2nd order systems | Slides; Ch03 in [1] | |
| 5 | Wed. Feb. 11 | • Block diagrams | Slides; Ch04 in [1] | HW #5 (A); HW #4 (D) |
| 6 | Mon. Feb. 16 | President’s Day | | No Class Scheduled |
| 6 | Wed. Feb. 18 | • Feedback structures and the effect of feedback | Slides; Ch04 in [1] | HW #6 (A); HW #5 (D) |
| 7 | Mon. Feb. 23 | • Stability | Slides; Ch04 in [1] | |
| 7 | Wed. Feb. 25 | Midterm #1 | | HW #7 (A); HW #6 (D) |
| 8 | Mon. Mar. 2 | • Unit feedback system type
 • Proportional Integral Derivative (PID) control — Part 1 | Slides; Ch04 in [1] | |
| 8 | Wed. Mar. 4 | • Proportional Integral Derivative (PID) control — Part 2
 • Rate feedback control | Slides; Ch04 in [1] | HW #8 (A); HW #7 (D) |
<p>| 9 | Mon. Mar. 9 | • Root-locus/rules — Part 1 | Slides; Ch05 in [1] | |
| 9 | Wed. Mar. 11 | • Root-locus/rules — Part 2 | Slides; Ch05 in [1] | HW #9 (A); HW #8 (D) |
| 10 | Mon. Mar. 16 | Spring Break | | No Class Scheduled |
| 10 | Wed. Mar. 18 | Spring Break | | No Class Scheduled |
| 11 | Mon. Mar. 23 | • Lead and lag compensator design | Slides. | |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>Slides/Ch06 in</th>
<th>Homeworks</th>
</tr>
</thead>
</table>
| 11 | Wed. Mar. 25 | • Frequency response and frequency response methods
• Bode plots — Part 1 | Slides; Ch06 in [1] | HW #10 (A); HW #9 (D) |
| 12 | Mon. Mar. 30 | • Bode plots — Part 2 | Slides; Ch06 in [1] | |
| 12 | Wed. Apr. 1 | Midterm #2 | | HW #11 (A); HW #10 (D) |
| 13 | Mon. Apr. 6 | • Nyquist stability criterion — Part 1 | Slides; Ch06 in [1] | |
| 13 | Wed. Apr. 8 | • Nyquist stability criterion — Part 2 | Slides; Ch06 in [1] | HW #12 (A); HW #11 (D) |
| 14 | Mon. Apr. 13 | • Stability margins
• Stability robustness | Slides; Ch06 in [1] | |
| 14 | Wed. Apr. 15 | • Sensitivity functions
• Loop shaping — Part 1 | Slides. | HW #13 (A); HW #12 (D) |
| 15 | Mon. Apr. 20 | • Loop shaping — Part 2 | Slides. | |
| 15 | Wed. Apr. 22 | • Quiz #2
• Frequency-response method design examples — Part 1 | Slides; Ch06 in [1] | HW #14 (A); HW #13 (D) |
| 16 | Mon. Apr. 27 | • Frequency-response method design examples — Part 2 | Slides; Ch06 in [1] | |
| 16 | Wed. Apr. 29 | • Review for final exam | Slides. | HW #14 (D) |

Document first uploaded: December 30, 2014
The contents of this syllabus are subject to change. Weekly information will be updated without notice. Change in policies, important dates, and homework content will be announced in class.

Prof. Néstor O. Pérez-Arancibia
APPENDIX: Statement on Academic Conduct and Support Systems

Academic Conduct
Plagiarism - presenting someone else’s ideas as your own, either verbatim or recast in your own words - is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, http://policy.usc.edu/scientific-misconduct.

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity http://equity.usc.edu or to the Department of Public Safety http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us. This is important for the safety of the whole USC community. Another member of the university community - such as a friend, classmate, advisor, or faculty member - can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men http://www.usc.edu/student-affairs/cwm/ provides 24/7 confidential support, and the sexual assault resource center webpage http://sarc.usc.edu describes reporting options and other resources.

Support Systems
A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute http://dornsife.usc.edu/ali, which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information http://emergency.usc.edu will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.