AME 302 Dynamic Systems
Units: 3
Spring 2015—Tue, Thu—9:30-10:50 am

Location: MHP 106

Instructor: Dr. Inna Abramova
Office: BHE 315
Office Hours: Tuesday, Thursday, 11:00 am-1:00 pm
Contact Info: abramova@usc.edu; (213) 740-5234

Teaching Assistant:
Office: VHE 202
Office Hours: TBD
Contact Info: (213) 740-8253

IT Help: USC Information Technology Services
http://itservices.usc.edu/
Hours of Service: Monday-Thursday: 8:00 am-7:00 pm,
Friday: 8:00 am-5:00 pm,
Saturday-Sunday: 1:00 pm-5:00 pm
Contact Info: consult@usc.edu, (213) 740-555
Course Description
Modeling of lumped parameter elements and systems; free and forced response of first and second order systems; design-oriented approach to dynamic systems. This course is suitable for undergraduate students in aerospace, bio, civil and mechanical engineering.

Learning Objectives
- Math review: vectors and matrices, complex numbers, differential equations, Laplace transform, analytical solutions of 1st-order and 2nd-order differential equations
- Dynamic system representations: differential equations, transfer functions, state equations, block diagrams
- Modeling of mechanical, electrical, fluid and thermal systems
- Lagrange’s equations for mechanical systems
- Modeling of combined or mixed dynamic systems, electro-mechanical systems
- System-Level analysis in time domain, free and forced response, transient and steady-state response, system stability
- Introduction to frequency-domain analysis
- Introduction to feedback control systems
- Utility of software packages MATLAB/SIMULINK and/or Wolfram Mathmatica for modeling and simulation of dynamical systems; numerical solution of differential equations

Prerequisite(s): MATH 245
Co-Requisite (s): None
Concurrent Enrollment: None
Recommended Preparation: AME 309 or CE 309; AME 301 or CE 325

Course Notes
Class notes, assignments, handouts, and other class materials are downloadable from the Blackboard: https://blackboard.usc.edu/. Class announcements will also be posted on the Blackboard.

Required Readings and Supplementary Materials
Required Textbook:

Supplementary Reading:

Description and Assessment of Assignments

Two midterm exams, 10 sets of weekly homework problems, a project, and the final exam will be assigned and graded during the semester. The accumulated points that a student earned from all the assignments will be used to assign a grade for the student. The grading is curved.

Software MATLAB/Simulink or Wolfram Mathematica is required to do the project.

Grading Breakdown

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
<th>% of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Homeworks, 15 pts each</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>Project</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Final Exam</td>
<td>210</td>
<td>35</td>
</tr>
</tbody>
</table>

TOTAL 600 100

Assignment Submission Policy

Weekly homework assigned, and due the following week. The class project report is due April 30, 2015.

Additional Policies

Late homework receives **NO** credits.

A 90-min discussion session will be held each week, to address problem-solving, issues in lectures, homework problems, and the project. Date, time, and classroom location are to be determined.
Course Outline
1. Introduction to AME 302 (Refer to Chapter 1)

2. Mathematics Review (Refer to Chapter 2; handout)
 - Vectors and Matrices (handout)
 - Complex numbers (handout)
 - Ordinary differential equations; solving differential equations via the method of undetermined coefficients (Section 2.1, handout)
 - Laplace Transform & its properties; Initial Value theorem & Final Value theorem (Section 2.2, handout)
 - Inverse Laplace transform by partial fraction expansion (Section 2.4, handout)
 - Solution of differential equations via Laplace transform (Section 2.3, handout)

3. Mechanical Systems (Refer to Chapters 2, 3, 4, and 5)
 - Three keys in modeling dynamic systems: (a) Fundamental principles; (b) models of basic elements; and (c) ways of analysis (synthesis)
 - Review of fundamental principles (Newton’s laws) of mechanical systems
 - Inertia, spring and damping elements (Sections 4.1, 4.2, 4.4, 4.5)
 - Translational and rotational systems (Chapter 3)
 - Geared systems (Chapter 3)
 - Derivation of equations of motion (rigid body motion, single and multi-body systems, coupled translational and rotational systems) (Chapters 3 and 4)
 - Transfer function formulation (Sections 2.6 and 5.1)
 - State-space representation (Section 5.2)
 - Block diagrams (Section 5.1)
 - Energy methods and Lagrange’s equations (optional) (Section 4.3, handout)

4. Electrical Systems (Refer to Chapter 6)
 - Basic elements and concept of impedance (Sections 6.1 and 6.3)
 - Passive circuit analysis (Section 6.2)
 - Active circuit analysis (Section 6.4)

5. System Analysis in Time Domain – Transient and Steady-State Response (Refer to Chapter 8)
 - Categories of system response
 - 1st-order systems (Section 8.1)
 - 2nd-order systems (Sections 8.2 and 8.3)
 - Higher-order systems

6. System-Level Analysis (Refer to Chapters 6, 9, and 10; handout)
 - Block diagrams with multiple inputs and multiple outputs
 - Electro-mechanical systems (Sections 6.5 through 6.7)
 - Feedback control systems (Chapter 10)
• Stability (handout)
• Frequency response (Chapter 9)

7. Modeling and Simulation with software: MATLAB/SIMULINK and Wolfram Mathematica (Refer to Chapter 5, and handouts)
 • Transfer function formulation and system response with MATLAB (Sections 2.10 and 4.7, and handout) and with Mathematica (handout)
 • State representation with MATLAB (Section 5.3 and handout) and with Mathematica (handout)
 • Solution of Differential equations with MATLAB (Section 5.4) and with Mathematica (handout)
 • Block diagram and SIMULINK (Sections 5.5, 5.6, and 6.9)

8. Thermal and Fluid Systems (optional, time-permitting; refer to Chapter 7)
 • Fluid capacitance and fluid resistance
 • Liquid-level systems
 • Thermal capacitance and thermal resistance
 • Dynamic models of thermal systems
Course Schedule: A Weekly Breakdown

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics/Daily Activities</th>
<th>Readings and Homework</th>
<th>Deliverable/ Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, Mathematics Review</td>
<td>Chapters 1 and 2; handout</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mathematics Review</td>
<td>Chapter 2; handout</td>
<td>HW1 due 1/27</td>
</tr>
<tr>
<td>3</td>
<td>Mechanical systems: modeling, fundamental principles, basic elements, translational motion</td>
<td>Chapter 4 (Sections 4.1, 4.2) HW2 assigned</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mechanical systems: translational and rotational systems</td>
<td>Chapter 3 (Section 3.1) HW2 assigned</td>
<td>HW2 due 2/03</td>
</tr>
<tr>
<td>5</td>
<td>Mechanical systems: rotational systems</td>
<td>Chapters 3 and 4 HW4 assigned</td>
<td>HW3 due 2/10</td>
</tr>
<tr>
<td>6</td>
<td>Mechanical systems: rigid body motion, multi-body systems, coupled translational and rotational systems</td>
<td>Chapters 3 and 4 HW5 assigned</td>
<td>HW4 due 2/17</td>
</tr>
<tr>
<td>7</td>
<td>System modeling techniques: transfer function, state-space representation, block diagrams</td>
<td>Sections 2.6, 5.1, 5.2 HW6 assigned</td>
<td>HW5 due 2/24</td>
</tr>
<tr>
<td>8</td>
<td>Midterm material review, Project review</td>
<td>Class Project assigned</td>
<td>HW6 due 3/03</td>
</tr>
<tr>
<td>9</td>
<td>Modeling & Simulation with Software, Electrical systems: fundamentals</td>
<td>Sections 2.10, 4.7, 5.3-5.6, and handout</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Electrical systems: passive and active circuits analysis</td>
<td>Chapter 6 (Sections 6.1, 6.2)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>System-Level analysis: modeling of combined systems, Electromechanical systems</td>
<td>Handout Chapter 6 (Sections 6.5-6.7) HW7 assigned</td>
<td>HW7 due 3/31</td>
</tr>
<tr>
<td>12</td>
<td>Midterm material review</td>
<td>Class Project assigned</td>
<td>HW8 due 4/07</td>
</tr>
<tr>
<td>13</td>
<td>Energy methods and Lagrange’s Equations</td>
<td>Section 4.3, handout Chapter 10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Feedback control systems</td>
<td>HW9 assigned</td>
<td>HW9 due 4/21</td>
</tr>
<tr>
<td>15</td>
<td>System analysis in time domain</td>
<td>Chapter 8 HW10 assigned</td>
<td>HW10 due 4/28</td>
</tr>
<tr>
<td></td>
<td>System-Level analysis: stability, frequency response</td>
<td>Chapter 9 handout</td>
<td>Class Project report due 4/30</td>
</tr>
<tr>
<td></td>
<td>Course review for final exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINAL</td>
<td>Final Exam</td>
<td></td>
<td>5/12 8:00 – 10:00 am</td>
</tr>
</tbody>
</table>
Statement on Academic Conduct and Support Systems

Academic Conduct
Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is a serious academic offense with serious consequences. Please familiarize yourself with the discussion of plagiarism in SCampus in Section 11, Behavior Violating University Standards [https://scampus.usc.edu/1100-behavior-violating-university-standards-and-appropriate-sanctions/]. Other forms of academic dishonesty are equally unacceptable. See additional information in SCampus and university policies on scientific misconduct, [http://policy.usc.edu/scientific-misconduct/].

Discrimination, sexual assault, and harassment are not tolerated by the university. You are encouraged to report any incidents to the Office of Equity and Diversity [http://equity.usc.edu/] or to the Department of Public Safety [http://capsnet.usc.edu/department/department-public-safety/online-forms/contact-us]. This is important for the safety whole USC community. Another member of the university community – such as a friend, classmate, advisor, or faculty member – can help initiate the report, or can initiate the report on behalf of another person. The Center for Women and Men [http://www.usc.edu/student-affairs/cwm/] provides 24/7 confidential support, and the sexual assault resource center webpage sarc@usc.edu describes reporting options and other resources.

Support Systems
A number of USC’s schools provide support for students who need help with scholarly writing. Check with your advisor or program staff to find out more. Students whose primary language is not English should check with the American Language Institute [http://dornsife.usc.edu/ali], which sponsors courses and workshops specifically for international graduate students. The Office of Disability Services and Programs [http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html] provides certification for students with disabilities and helps arrange the relevant accommodations. If an officially declared emergency makes travel to campus infeasible, USC Emergency Information [http://emergency.usc.edu/] will provide safety and other updates, including ways in which instruction will be continued by means of blackboard, teleconferencing, and other technology.