University of Southern California – Department of Biological Sciences

HBIO-408L* –Biomechanics (4 Units) Fall 2014

http://www.usc.edu/dept/LAS/kinesiology/exsc408l/lab/lab.html

Instructors: Jill McNitt-Gray, Ph.D. mcnitt@usc.edu

Lecture: VKC102 M/W 2:00 – 3:20 P.M; Comprehensive Final: Friday 12/12, 2:00–4:00 PM Office Hours: MON / WED, 3:20-4:20 PM (Bring lab notebook to office hour meetings).

Laboratory: 3 hours/week	2:00 – 4:50 T	PED B16
	5:00 – 7:50 T	PED B16
	2:00 – 4:50 Th	PED B16

*Course includes project-based capstone experience

Kinematic and kinetic analysis of human motion; emphasis on performance enhancement and injury prevention. Concepts from high school algebra (word problems and solving for an unknown) and the use of sine, cosine, and tangent concepts from trigonometry. Calculus is not required.

Prerequisite: <u>EXSC 301</u>L and 1 from (<u>MATH 108</u> or <u>MATH 125</u>) and 1 from (<u>PHYS 135a</u> or <u>PHYS 151</u>)

Required Texts and Supplies:

- 1. Web-Based Lecture Notes
- 2. Selected Literature Readings available through PubMed@usc through USC Library
- 3. Electronic Storage Device (back up and store homework, labs, and project content)

Course Reader (Optional)

I. Objectives:

- 1. Develop critical thinking and analytical skills to solve meaningful problems; use Newton's Laws to understand cause-effect relationships governing human movement.
- 2. Improve oral, written, electronic information and communication skills.
- 3. Gain hands-on experience analyzing motion and quantifying and interpreting biomechanical information in scientific, ethical, social, and environment related contexts.

II. Grading Procedures:

- 1. Exam 1 20%
- 2. Exam 2 20%
- 3. Comprehensive Final 25%
- 4. Lab 20%
- 5. Project 15%

Lab Grading:

- 1. Pre/Post Lab Reports, Demonstrations, 50%
- 2. Weekly Lab Quizzes 25%
- 3. Practical 25%

Grading Scale: >90%=A,> 80%=B, >70%=C, >65%=D, otherwise =F

III. Laboratory Component

Lab Director: Emi Embler, Ph.D. Email: eembler@usc.edu

Teaching Assistants:

Chris Ramos (rchristo@usc.edu) Office hours PED B9 Ian Russell (<u>irussell@usc.edu</u>) Office hours PED B9

IV. Expectations

- 1. Come prepared for class and labs (lecture pop quizzes).
- 2. Sincere Personal Investment in independent discovery and lab activities.
- 3. USC conduct code (you must do your own work!) Refer to **SCampus** Academic Integrity Section.
- 4. Excused absences require written notification one week in advance.
- 5. Honor due dates in lab and lecture (anything turned in after due date = zero points).
- 6. Email and class participation.

VI. Project Overview and Grading

Project: Identify significant problem (compare/contrast), <u>generate a meaningful hypothesis</u>, design and conduct a biomechanical experiment to test hypothesis (limitation of analysis: two 2D planar movements).

Project Grade:

- 1. Background/Significance (10%) Problem? known/unknown in peer reviewed literature?
- 2. Kinematics (angle-angle) (25%) kinematic context for muscle force generation
- 3. Kinetics (whole body: imp/mom (25%); joint kinetics (25%) cause/effect at joint &CM levels
- 4. Presentation and hand-in materials (15%); all comparisons specific to research question
 - a) 3 related scientific journal articles (.pdf emailed to TA prior to presentation)
 - b) hand written Free Body Diagrams and associated calculations (show all work)
 - c) Paper copy of presentation (must be able to read all text on figures)
 - d) Peer evaluation (emailed to TA prior to presentation)

VII. Academic Accommodations:

Any student requesting academic accommodations based on a disability are required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (the instructor) as early in the semester as possible. DSP is located in Student Union (STU) 301 and is open 8:30-5:00pm Monday – Friday. The phone number for DSP is (213) 740-0776.

VIII. Academic Integrity:

Students who violate University standards of academic integrity are subject to disciplinary sanctions, including failure in the course and suspension from the University. Since dishonesty in any form harms the individual, other students and the University, academic integrity policies will be strictly enforced. I expect you will familiarize yourself with the Academic Integrity guidelines found in the current SCampus.

IX. Academic Integrity Violations:

• Academic dishonesty/misconduct (plagiarism, cheating, unauthorized collaboration, etc.) will not be tolerated. All academic integrity violations will result in a grade sanction and will be reported to the Office for Student Judicial Affairs. It is your responsibility to "reasonably" protect your own work from the plagiarism of others.

- If plagiarism is detected on a group project, all members of the group will be held responsible.
- You are expected to be familiar with the Academic Integrity guidelines found in the current SCampus (student guidebook). An electronic version is available at http://usc.edu/scampus.

Week	*Syllabus may be modified as		Practice with	Lab Exercises	Project Progression*:
of*	needed		problem solving		Understanding Cause-Effect
	Monday	Wednesday	Homework		*Integrate knowledge each week
1 8/25	Cause-effect	kinematics-linear,	Trig, linear motion	introduction/	Microsoft Excel, Kinovea (PC), Ubersense
	analysis, FBD	angular muscle force		computer skills, FBD	(MAC) * develop proficiency
2 9/1	Labor Day	Motion analysis	Center of mass	linear kinematics &	** identify real world problems & critical
		Mechanical Objectives		TBCM (video clips)	questions that are meaningful to you!!
3 9/8	Linear	Projectile motion	projectile motion	angular kinematics	** finalize movements of interest and begin
	Impulse, FBD				extensive research on topic- what? how?
4 9/15	Angular	Integration of	linear impulse	linear impulse &	** critically read literature, pilot, develop
	Impulse, FBD	Concepts, FBD		momentum	hypotheses and experimental design - why?
5 9/22	Integration of	Review	ang kine/imp	angular impulse &	** methods, variables to test hypothesis
	Concepts,FBD			momentum	Thought experiments? If then? So what?
6 9/29	EXAM 1	Project Planning	Motion Analysis	total body kinetics	** collection plan, analysis plan, time table
7 10/6	Joint level	Muscle contribution to	Joint kinetics	PROJECT	** Practice the experiment, movements
	FBD	Joint Kinetics		COLLECTION	need to be performed in a realistic context
8	Joint Level	Applications in Rehab	joint kinetics	LAB PRACTICAL	REVIEW QUANTITATIVE SKILLS
10/13	Kinetics	engineering			MAP out Project Time line within group
9	Applications in	Newton's	project: assimilate	joint kinetics	** title, significance, expected results from
10/20	Sports Science	Laws of Motion, FBD	research literature		compare and contrast analysis
10	Multijoint	Multijoint kinetics	project: introduction,	project: kinematics	** analyze multijoint control using joint and
10/27	Kinetics		methods		segment kinematics
11	Clinical	Review	project: hypothesis	project: impulse/	** analyze net impulse/change in
11/3	Applications		(related to each var)	momentum	momentum relationships (lin or ang)
12	Project	EXAM 2	project: results &	project: joint kinetics	**analyze upper extremity or lower
11/10	analysis		discussion		extremity joint kinetics
13	Project	Translation into practice	project: results &	project: interpretation	** compare results to the literature, data
11/17	discussion		discussion	(optional)	makes sense? What makes quantities big
					and small? Cause-effect? Significance?
14	Natural	Thanksgiving	project: discussion	Final report .ppt/prezi	** assimilate results, communicate results
11/24	History				
15	Applications	Review for Final Exam	Project take-home	ORAL PROJECT	** 10 min, 5 min questions, hand written
12/1		FINAL: Friday 12/12	message	PRESENTATIONS-	FBD/ joint kinetics turned in before,
		2-4 PM			literature .pdf emailed