AME 521 Engineering Vibrations II

Fall 2014 Department of Mechanical Engineering University of Southern California

Description: 3 units. Multi-degree of freedom systems; modal analysis; Rayleigh's quotient; continuous systems; modal analysis; beams, rods, membranes; Galerkin, Rayleigh Ritz methods; finite elements.

Prerequisite: AME 420

Instructor	Professor Ben Yang		
	Office: OHE 430		
	Phone: (213) 740-7082; Email: bingen@usc.edu		
Class Meeting	Wednesday 6:40-9:20 pm, OHE100C		
Office Hour	TBD		

Text Book:	Daniel J. Inman, 2014, Engineering Vibration, Pearson, 4 th edition ISBN-13: 978-0-13-287169-3			
References:	[1] S. Graham Kelly, 2006, Advanced Vibration Analysis, CRC.			
	[2] Leonard Meirovitch, 2002, Fundamentals of Vibrations, McGraw-Hill.			
	[3] William J. Bottega, 2006, Engineering Vibrations, CRC Press			
Grading:	Midterm Exam	20%		
	Final Exam	40%		
	Homework	30%		
	Project	10%		
	Total	100 %		
Homework:	Weekly homework assigned, and due the following week. Late homework receives NO credits.			
Project:	A project requesting software MATLAB will be assigned. A final report will be due at the end of the semester.			

Topics and Reading Assignments:

- Review of single-degree-of-freedom systems (Chapter 3 of the textbook) 1 week
- Establishment of equations of motion (Chapter 2) 1 week
 - Newton's laws
 - Lagrange's equations
 - Small oscillation and linearization (two methods)
- Multi-degree-of-freedom systems (Chapter 3 and handouts) 4 weeks
 - Spring-mass-damper systems
 - Methods of influence coefficients for linear systems
 - Natural modes of vibration
 - Eigenvalue problems and solutions
 - Rayleigh's quotient
 - Steady-state response to harmonic excitations
 - Vibration absorbers
 - Transient response via modal analysis
 - Damping in vibrating systems
 - Gyroscopic systems
 - Use of MATLAB in vibration analysis
- State equations and transfer function formulation (Handouts) 1 week
 - State equations and solution via eigenvector expansion and numerical integration
 - Transfer function formulation and convolution integral
 - Transient response via inverse Laplace transform for general mechanical systems described by $M\ddot{x} + (D+G)\dot{x} + Kx = f$.
- Distributed vibrating systems (Chapter 7) 4 weeks
 - Boundary-initial value problems of strings, rods, shafts and beams
 - Hamilton's principles and equations of motion
 - Solution of eigenvalue problems
 - Natural normal modes and eigenfunction expansion
 - Systems with lumped end masses
 - Damping in distributed systems
 - Self-adjoint and non-self-adjoint systems
 - Green's function formulation
 - Vibration of membranes
- Approximate methods for distributed systems (Chapters 5 and 8) 2 weeks
 - Rayleigh's quotient
 - o Galerkin's method
 - Rayleigh Ritz method
 - Finite element method

Course Schedule:

Week	Date	Materials Covered/Exams	Assignments
1		Review of single-degree-of-freedom systems	HW 1
2		Methods for establishing equations of motion	HW 2
3		Multi-degree-of-freedom (M-DOF) systems	HW 3
4		M-DOF systems	HW 4
5		M-DOF systems	HW 5
6		M-DOF systems	HW 6
7		M-DOF systems	HW 7, Project description
8		Distributed vibrating systems: Hamilton's principle	HW 8
9		Midterm Exam	
10		Distributed systems: eigenvalue problem	HW 9
11		Distributed systems: Eigenfunction expansion	HW 10
12		Distributed Transfer Function Method	HW 11
13		Approximate solutions: Rayleigh quotient, Rayleigh-Ritz Method	HW12
14		Thanksgiving No class	
15		Finite element method, course review	
		Project report due (before or at the final exam)	
		Final Exam: 7-9 pm	