AME 521 Engineering Vibrations II

Fall 2014
Department of Mechanical Engineering
University of Southern California

Description: 3 units. Multi-degree of freedom systems; modal analysis; Rayleigh's quotient; continuous systems; modal analysis; beams, rods, membranes; Galerkin, Rayleigh Ritz methods; finite elements.

Prerequisite: AME 420

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Professor Ben Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>OHE 430</td>
</tr>
<tr>
<td>Phone</td>
<td>(213) 740-7082</td>
</tr>
<tr>
<td>Email</td>
<td>bingen@usc.edu</td>
</tr>
</tbody>
</table>

Class Meeting
Wednesday 6:40-9:20 pm, OHE100C

Office Hour
TBD

References:

Grading:
Midterm Exam 20%
Final Exam 40%
Homework 30%
Project 10%

Total 100%

Homework:
Weekly homework assigned, and due the following week. Late homework receives NO credits.

Project:
A project requesting software MATLAB will be assigned. A final report will be due at the end of the semester.
Topics and Reading Assignments:

- Review of single-degree-of-freedom systems (Chapter 3 of the textbook) – 1 week
- Establishment of equations of motion (Chapter 2) – 1 week
 - Newton’s laws
 - Lagrange’s equations
 - Small oscillation and linearization (two methods)
- Multi-degree-of-freedom systems (Chapter 3 and handouts) – 4 weeks
 - Spring-mass-damper systems
 - Methods of influence coefficients for linear systems
 - Natural modes of vibration
 - Eigenvalue problems and solutions
 - Rayleigh’s quotient
 - Steady-state response to harmonic excitations
 - Vibration absorbers
 - Transient response via modal analysis
 - Damping in vibrating systems
 - Gyroscopic systems
 - Use of MATLAB in vibration analysis
- State equations and transfer function formulation (Handouts) – 1 week
 - State equations and solution via eigenvector expansion and numerical integration
 - Transfer function formulation and convolution integral
 - Transient response via inverse Laplace transform for general mechanical systems described by \(M\ddot{x} + (D+G)\dot{x} + Kx = f \).
- Distributed vibrating systems (Chapter 7) – 4 weeks
 - Boundary-initial value problems of strings, rods, shafts and beams
 - Hamilton’s principles and equations of motion
 - Solution of eigenvalue problems
 - Natural normal modes and eigenfunction expansion
 - Systems with lumped end masses
 - Damping in distributed systems
 - Self-adjoint and non-self-adjoint systems
 - Green’s function formulation
 - Vibration of membranes
- Approximate methods for distributed systems (Chapters 5 and 8) – 2 weeks
 - Rayleigh’s quotient
 - Galerkin’s method
 - Rayleigh Ritz method
 - Finite element method
Course Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Materials Covered/Exams</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Review of single-degree-of-freedom systems</td>
<td>HW 1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Methods for establishing equations of motion</td>
<td>HW 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Multi-degree-of-freedom (M-DOF) systems</td>
<td>HW 3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>M-DOF systems</td>
<td>HW 4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>M-DOF systems</td>
<td>HW 5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>M-DOF systems</td>
<td>HW 6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>M-DOF systems</td>
<td>HW 7, Project description</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Distributed vibrating systems: Hamilton's principle</td>
<td>HW 8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Midterm Exam</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Distributed systems: eigenvalue problem</td>
<td>HW 9</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Distributed systems: Eigenfunction expansion</td>
<td>HW 10</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Distributed Transfer Function Method</td>
<td>HW 11</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Approximate solutions: Rayleigh quotient, Rayleigh-Ritz Method</td>
<td>HW 12</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Thanksgiving -- No class</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Finite element method, course review</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project report due (before or at the final exam)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Exam: 7-9 pm</td>
<td></td>
</tr>
</tbody>
</table>