CSCI 550: Advanced Data Stores

Basic Information
Place and time: Spring 2014, Tue/Thu 9:30-10:50 am
Instructor: Prof. Shahram Ghandeharizadeh, shahram@usc.edu, 213-740-4781
ITS Help: E-mail: consult@usc.edu
Phone: 213-740-5555
Web: http://www.usc.edu/its/csc/
Note: Software for programming assignments is available in ITS user rooms.

Prerequisites: CSCI 485 or 585

Course Description
The landscape of Database Management Systems (DBMSs) has expanded to include SQL, NoSQL and NewSQL systems. Some are hybrids that offer expressiveness of SQL extended with simple functionalities such as put, get, and delete calls of a key-value store. The purpose of this course is to provide an overview of these DBMSs along with their design and implementation. More specifically, we present and discuss:

1. Key-value stores such as Berkeley DB, LinkedIn’s Voldermort, Riak, Redis, and Amazon’s Dynamo,
2. Key-value SQL DBMSs such as USC’s SQLTrig and MIT’s CacheGenie and TxCache,
3. Document stores such as CouchDB, MongoDB, RavenDB, Jackrabbit, and SimpleDB,
4. Extensible record stores such as HBase, Facebook’s Cassandra, and Google’s BigTable,
5. Scalable RDMBS such as VoltDB, Clustrix, and ScaleDB.

In addition, we explore applications of these systems and their definition of consistency (strong, weak, and eventual). Other topics include: Scalable data stores, benchmarking frameworks to evaluate data stores, data center scale database management systems, and middle-tier caches.

This course assumes student familiarity with a conceptual data modeling tool such as Entity-Relationship (ER) data model, a logical data model such as the relational data model, SQL query language, normal forms and logical data design, physical characteristics of mass storage devices such as magnetic disks and memory, physical data design and index structures such as B+-tree and hash indexes, concurrency control and crash recovery protocols.

Course Requirements and Grades

- There are no required text books. The reading material is based on recently published technical papers available via the ACM/IEEE/Springer digital libraries. All USC students have automatic access to these digital archives.
- Grading breakdown
 - Exam 1: 30%
 - Exam 2: 30%
 - Class project: 20%
 - Class participation: 10%
 - Homework assignment: 10%
• In class attendance is mandatory due to the nature of the technical papers discussed and
presented. Absence from lecture will almost certainly impact student performance for both
exams.

Course Project
Sample class projects may include a paper that surveys a technique or a system, an application of
either a NewSQL or a NoSQL system, use of a benchmark to evaluate a system, development of
a new benchmark that captures the essence of an application, and design of a consistency
technique for next generation data stores.

Spring 2014 At a Glance
Here is an overview of the Spring 2014 semester calendar and its reading material. Papers
covered by each topic are detailed below.

- Jan 13, 15: Introduction
- Jan 20: Martin Luther King Day
- Jan 22: Introduction Continued
- Jan 27, 29: Cache Augmented SQL Systems
- Feb 3, 5: NewSQL
- Feb 5: Projects start
- Feb 10, 12: Benchmarks
- Feb 17: President’s Day
- Feb 19, 24: Web, Databases, and Caches
- Feb 26: Key-Value Stores
- March 3: Review for Exam 1
- March 5: Exam 1 covers material presented from Jan 13 to Feb 26
- March 10, 12: Scalable RDBMS
- March 17, 19: Spring Break
- March 24, 26, 31: Data Center Scale Stores
- April 2, 7: In-Class presentation on projects
- April 9, 14: Extensible Stores
- April 16, 21: Application Transparent Mid-Tier Database Caching
- April 23: Project reviews
- April 28: Review for Exam 2
- April 30: Exam 2 covers material presented from March 24 to April 21

Course Readings/Class Sessions
The reading material for the course is organized chronologically and based on a specific theme.
This material is tentative and based on recent publications. We will make adjustments to the list
as new manuscripts (currently under review) are accepted for publication.

Introduction
- M. Stonebraker. *New Opportunities for New SQL*. Communications of the ACM,
 November 2012, Vol. 55, No. 11.
- C. Mohan. History Repeats Itself: Sensible and NonsenSQL Aspects of the NoSQL Hoopla. EDBT 2013.
Cache Augmented SQL Systems

Suggested readings:

NewSQL

Suggested readings:

Benchmarks

Suggested Reading:

Web, Databases, and Caches

Key-Value Stores

- B. Atikoglu, et. al. Workload Analysis of a Large-Scale Key-Value Store. ACM SIGMETRICS 2012.

Suggested Reading:
• B. Debnath, S. Sengupta, Jin Li. SkimpyStash: RAM Space Skimpy Key-Value Store on Flash-based Storage. SIGMOD 2011.

Data Center Scale Stores

Suggested reading:

Extensible Stores
• O. Kennedy, Y. Ahmad, C. Koch. DBToaster: Agile Views for a Dynamic Data Management System. CIDR 2011.

Application Transparent Mid-Tier Database Caching

Suggested Reading:
• The Times Ten Team. High Performance and Scalability Through Application-Tier In-Memory Data Management. VLDB 2000.
• Lou and J. Naughton. Form-Based Proxy Caching for Database Backed Web Sites. VLDB 2001.

Statement for Students with Disabilities
Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m.–5:00 p.m., Monday through Friday. Website and contact information for DSP: http://sait.usc.edu/academicsupport/centerprograms/dsp/home_index.html, (213) 740-0776 (Phone), (213) 740-6948 (TDD only), (213) 740-8216 (FAX) ability@usc.edu.

Statement on Academic Integrity
USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected to understand and abide by these principles. SCampus, the Student Guidebook, (www.usc.edu/scampus or http://scampus.usc.edu) contains the University Student Conduct Code (see University Governance, Section 11.00), while the recommended sanctions are located in Appendix A.

Emergency Preparedness/Course Continuity in a Crisis
In case of a declared emergency if travel to campus is not feasible, USC executive leadership will announce an electronic way for instructors to teach students in their residence halls or homes using a combination of Blackboard, teleconferencing, and other technologies.