ENE 505 Energy and the Environment
Fall 2013 Course Syllabus

Class	Wednesday	6:40-9:20pm	RTH 109
Professor | Matin Lackpour
Office
Phone | (818) 771-6756 Work — (661) 313-7112 Cell
Email | lackpour@usc.edu
Office Hours | Wednesdays 5:30-6:30 or by Appointment
Teaching Assistant
Email
Prerequisites | Graduate standing
Additional Supplemental material on weekly basis
Course Objectives | Students will learn basic theories of different sources of energy production, how they can be obtained, and how to perform feasibility studies related to the sources of energy, how to quantify, and evaluate any environmental impacts.
Learning Objectives | This course provides students with engineering knowledge and techniques for understanding, assessing, and mitigating environmental issues associated with energy production, efficiency rating, storage, transmission, integration in existing portfolio, and consumption.

Synopsis:

ENE 505 examines the scientific and engineering aspects of energy production, transformation, and consumption, investigates the energy flows in the Earth’s systems, and provides students with necessary engineering approaches and techniques for understanding, assessing, and remediating environmental problems associated with energy production, transformation, and consumption.

Course Outline and Schedule

Week 1 8-28-13
Introduction: Getting Power to the People (Energy and Environment)
Sources of energy
Renewable and non-renewable energy resources
Economics of energy production and consumption
Making global and local decisions on the structure of utilized energy sources
Course Syllabus

Week 2
Global Energy Use and Supply
9-4-13
Renewable resources and fossil fuels
Hydraulic, geothermal, wind, tidal, solar, biomass energies
Oil, gas, coal, and oil shale energy production
Environmental consequences of the fossil fuels production and utilization

Week 3
Thermodynamic Principles of Energy Conversion
9-11-13
Flue gases
NOx formation and reduction
Combustion emission control
Thermodynamic fundamentals
Natural gas combustion
Coal combustion
Estimating steam power

Week 4
Electrical Energy Generation, Transmission, and Storage
9-18-13
Electric Power Transmission
Energy Storage
Properties of Energy Storage

Week 5
Fossil Fueled Power Plants
9-25-13
Components
Cycles
Cogeneration
Fuel Cell
Statistical Techniques Part I

Week 6
Nuclear Energy
10-2-13
Fundamentals of nuclear power
Nuclear power systems
Comparing fission and fusion energies
Nuclear power health effects
Safety requirements for nuclear power plants
Radioactive waste management and disposal

Week 7
Alternative Fuels and Advanced Technologies (Renewable Energy)
10-9-13
Liquefied petroleum gas
Compressed natural gas
Methanol fuel
Ethanol fuel
Hydrogen fuel
Reformulated gasoline (RFG)
Fuel cells
Environmental effects of fuel cells

Week 8
Mid-term Exam
10-16-13
6:40 – 9:00 p.m.
Week 9 Transportation
10-23-13
Internal Combustion
Power and Performance
Fuel Efficiency
Electric Drive Vehicles
Vehicle Emission

Week 10 Environmental Effect of Fossil Fuels Combustion
10-30-13
Acids deposition
Atmospheric warming
Coal ash treatment
Waste management

Week 11 Global Climatic Changes
11-6-13
Greenhouse gasses
Greenhouse effect
Characteristics of the present-day atmosphere
Key points of the adiabatic theory
Prognostic atmospheric temperature estimates
Impact of anthropogenic factor on the Earth’s climate
Influence of the World Ocean on the atmospheric content of carbon dioxide

Week 12 Global Forces of Nature Driving the Earth’s Climate
11-13-13
Solar irradiation reaching the Earth
Orbital deviations and the Earth’s mass redistribution
The Earth’s degassing
Global climatic cooling due to increase in atmospheric carbon dioxide content
Inner sources of the Earth’s energy
World Ocean
Microbial activity at the Earth’s surface
Global warming or global cooling?

Week 13 Review of the Course
11-20-13
Key points of the course
Topics for further studies
Engineering principles of the effects comparison
Making best possible decisions with resources available
Student presentations

Week 14 Statistical Techniques Part II
11-27-13
and student presentations

Week 15 Student presentations
12-4-13

Week 16 Final Exam
12-11-13 6:40 – 9:00 p.m.
Grading policy:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>15%</td>
</tr>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>20% (50% closed book)</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20% (50% closed book)</td>
</tr>
<tr>
<td>Report</td>
<td>25%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Report and Presentation

- Reports should be approximately ten to fifteen pages and contain at least five references.
 - Single space, use an average font (11 or 12pt)
- **Due date:** November 20, 2013. You could submit the written Report by November 20, 2013.
- The subject of report should be approved by Lecturer.
- Each student in a group of no more than 4 students will present his/her report in the class (20 minutes presentation).

Statement for Students with Disabilities

Any student requesting academic accommodations based on a disability is required to register with Disability Services and Programs (DSP) each semester. A letter of verification for approved accommodations can be obtained from DSP. Please be sure the letter is delivered to me (or to TA) as early in the semester as possible. DSP is located in STU 301 and is open 8:30 a.m.–5:00 p.m., Monday through Friday. The phone number for DSP is (213) 740-0776.

Statement on Academic Integrity

USC seeks to maintain an optimal learning environment. General principles of academic honesty include the concept of respect for the intellectual property of others, the expectation that individual work will be submitted unless otherwise allowed by an instructor, and the obligations both to protect one’s own academic work from misuse by others as well as to avoid using another’s work as one’s own. All students are expected to understand and abide by these principles. *Scampus*, the Student Guidebook, contains the Student Conduct Code in Section 11.00, while the recommended sanctions are located in Appendix A:

http://www.usc.edu/dept/publications/SCAMPUS/gov/.

Students will be referred to the Office of Student Judicial Affairs and Community Standards for further review, should there be any suspicion of academic dishonesty. The Review process can be found at:

http://www.usc.edu/student-affairs/SJACS/.