SYLLABUS POWER ELECTRONICS: EE 528

Fall 2013

Andras Kuthi, Ph.D. Office hours: Mon., Wed., 8 – 9am, SSC 422

Office: SSC 422

Email: kuthi@usc.edu
Voicemail: (213) 740 7627
Lecture: Tue., Thu. 9:30 – 10:50am, THH 213
TA: Wei Wang, Email: wang194@usc.edu
Phone: (213) 271 4134 (weekdays only)
Office hour: Tue. 3:40-4:40pm, SSC 316

Course Summary: The course will focus on analysis and design of switched-mode power converters: basic circuit operation, steady-state converter analysis and transformer-isolated converters. Control systems, including ac modeling of converters using averaged methods, small signal transfer functions, and classical feedback loop design will also be covered. Other essential parts of power electronics design such as basic magnetics, inductor and transformer design and EMI and grounding principles will complete the course.

Course text:

"Fundamentals of Power Electronics", Second edition, R.W. Erickson and D. Maksimovic, University of Colorado, Boulder. Publisher: Springer Science+Business Media Inc., 912 pages, ISBN 0-7923-7270-0.

COURSE OUTLINE

000102 00122		
	8/27	Introduction
	8/29	Principles of Steady State Converter Analysis
	9/3, 9/5	Steady-State Equivalent Circuits, Losses, and Efficiency
	9/10, 9/12	Power Semiconductor Devices
	9/17, 9/19	Discontinuous Conduction
	9/24, 9/26	Converter Circuit Families
	10/1, 10/3	AC Equivalent Circuit Modeling
	10/8, 10/10	Converter Transfer Functions
	10/15, 10/17	Controller Design, Feedback, and Stability
	10/22,	MIDTERM
	10/24	Regulator Design
	10/29, 10/31	PID controller
	11/5, 11/7	Resonant Converters
	11/12, 11/14	Basic Magnetics Theory
	11/19, 11/21	Inductor Design
	11/26,	Transformer Design
	12/3, 12/5	Layout and grounding principles
	12/11 - 12/18	FINAL EXAM, place and time tdb.

Grading:

Homework (weekly) 30%, Midterm 30%, Final 40%.