CSCI-561 Foundations of Artificial Intelligence (Section 30195) – Fall 2013 Syllabus and Schedule Classes: Wednesday 3:30-6:10PM, Room SLH102

Office Hours: Wednesday 1:30-3:30PM, 6:10-7:10PM (SAL 216)

Text Books: (1) AIMA, (2) Autonomous Learning from the Environment (ALFE)

Week	Date	Topic	Reading	Homework	Project
1	Aug28	Welcome!	AIMA1		Project-1 out:
		Introduction and history of AI, Intelligent agents, systems, and robots.	AIMA2		robot move!
		Class structures, lectures, readings, homework, projects, exams, grades	ALFE-1		
2	Sep 4	Problem Solving, Search, and Optimization Problems	AIMA3	HW1,	
		Representations, goals, and various search algorithms	AIMA4	Encode State	
		Description of three projects. Project 1 handout	ALFE-2,6	Space	
3	Sep11	Game Playing and Constrain Satisfactions	AIMA5	HW2: Search	
	~ · · · ·	Representations and algorithms	AIMA6		
4	Sep18	Logical Representations and Reasoning	AIMA7	HW3: Logic	Project-1 due
	1	Propositional logic and inferences	AIMA8		,
		First-order logic and inferences, and systems	AIMA9		
5	Sep25	Intelligent Actions, Planning, and Robotics	AIMA10	HW4:	Project-2 out:
	1	Planning and scheduling.	AIMA11	Planning	robot search!
		General model of robotics, description and handout for Project 2	ALFE-3, 6.1		
6	Oct 2	Knowledge representations and model representations	AIMA 12	HW5: Game	
		Logics and probabilities. Knowledge bases, Expert systems, Action models.	ALFE-4	playing	
7	Oct9	Uncertain Knowledge and Reasoning	AIMA13-14	HW6:	
		Uncertainty, Probabilistic Representation & Reasoning, Bayesian Networks	ALFE-4	Probability	
8	Oct16	Probabilistic Reasoning over time: Temporal models, Hidden Markov	AIMA15	HW7: BN	
		Models, Kalman filters, Dynamic Bayesian Networks, Automata theory	ALFE-5.10	HMM, FSA	
9	Oct23	Utility Theories, functions, decision networks Sequential decision making,	AIMA 16-17	HW8:	Project-2 due
		Policies, MDP, PO-MDP, Multiagent decisions, Review for midterm exam	ALFE 5	POMOP	
10	Oct30	Midterm Close-book Exam (all materials above) – in class			Project-3 out:
					Robot learns!
11	Nov 6	Attribute-Based Learning: Forms of learning, Model selection, Supervised	AIMA18	HW9: DT,	
		Learning of Decision Trees , PAC learning, Decision Lists, Supervised	ALFE 4.1-5	NN, SVMs	
		learning: Neural Networks, Support Vector Machines, Ensemble and boost			
12	Nov13	Relation-Based Learning: Motivations, challenges, and algorithms.	AIMA 19	HW10:	
		Inductive logic programing, Complementary Discrimination Learning	ALFE 4.6-10	FOIL, CDL	
13	Nov20	Probability-Based Learning: Probabilistic Models, Naïve Bayes Models,	AIMA 20-21	HW11: RL,	
		EM algorithm, Reinforcement Learning	ALFE-5.10	NBM, EM	
14	Nov27	Surprise-Based Learning (guest lecture by Dr. Nadeesha Ranasinghe)	AIMA 24	HW12: SBL	Final exam
		Integrated Perception, Action, Problem Solving, and Learning. The challenge	ALFE-7-12		questions out
		of vision and object/people/activity recognition, and robotic applications.			
15	Dec 4	Introduction to Communication (Natural Language Processing),	AIMA22-23		
		Collaboration, Self-organization, and Self-reconfiguration	Handout		
16	Dec11	Future intelligent systems - The challenge of robots: with what we have	AIMA 25		Project3 due
		learned, what hard problems remain to be solved? Different types of robots.	LAFE-13		
		Tasks that robots are for. Parts of robots. Architectures. Configuration spaces.	Handout		
		Navigation, motion planning, locomotion, manipulation, and reconfiguration.			
17	Dec16	2-4PM: Final Close-book Exam (materials of entire semester) – in class			Final Exam

Project 1: Design and implement a simple robot Rx to move from point A to point B in an open environment.

Project 2: Give Rx intelligence so that it can search and navigate a path from point A to point B in a crowded environment.

Project 3: Make Rx learn from its own experience so that it can find a target in its environment.

Extra-Credit: Make Rx transform itself in order to solve problems in Project 2 and Project 3.

Grade Structure: Midterm: 25%, Final: 25%, Project-1: 10%, Project-2: 20%, Project-3: 20%.

Late Project Penalty: -30% of the project grade for each day that is late.

Class Website: http://www.isi.edu/robots/CS561 (more information can be found here)