New Course Announcement for Spring 2013 AME 583: Effects of Radiation on Health

This course is offered by the Department of Aerospace & Mechanical Engineering at USC, and is available on USC's Distance Education Network (DEN). The course lectures are webcast by DEN. Local students of course have the choice of taking it in the classroom setting if they wish. See <u>http://gapp.usc.edu/howdenworks</u>

Recommended Preparation: Physics 153, or equivalent				
Semester:	Spring 2013			
Time:	Tuesdays 6:40-9:20 pm			
Instructor:	Dr. Javad Rahimian, Kaiser Permanente			
Class Number:	28960R (On Campus)			
	29061D (Distance Education)			

Introduction and Purposes

The course will start with fundamental nuclear physics as a basis and build on applications relevant to human health. Besides the development of an understanding of the biological effects of radiation, course will emphasize problem solving and application to situations in a variety of health physics specialty areas. Students will experience the utilization of the basic concepts and principles to address a range of practical problems dealing with, for example, measurement, biological effects, radiation protection, nuclear accidents.

The course is suitable for Health Physicists, Dosimetrists, Radiation Therapists, Diagnostic Radiation Technologists, and Nuclear Engineers.

Course Requirements and Grades

- *Required text*: "Introduction to Health Physics" (4th Edition) by Herman Cember and Thomas E. Johnson, 2008, *ISBN*-13: 978-0071054614
- Recommended References:
- 1. "Basic Health Physics: Problems and Solutions" by Joseph John Bevelacqua
- 2. "Radiation Protection and Dosimetry: An Introduction to Health Physics" by Michael G. Stabin
- 3. "Radiation Protection: A Guide for Scientists, Regulators and Physicians," by Jacob Shapiro

• Grading	breakdown:
-----------	------------

0	
Homework:	20%
Mid-Term Exam	30%
Final Exam	50%
TOTAL	100%

For further information, contact Prof S.S. Sadhal sadhal@usc.edu

Lecture No.	Lecture Dates	Topic(s)	Textbook Chapter(s)
1, 2	Jan 15, 17	Review of atomic and nuclear structure.	1, 2
I, 2 Week 1	Jall 13, 17	Review of atomic and nuclear structure.	1, 2
3, 4, 5	Jan 22, 24,	Nuclear reactions and transformations. Kinetics of	3,4
Week 2-3	29	transformation. Natural and human-created	5, 4
		radiation.	
6, 7	Jan 31,	Types of radiation: alpha, beta and neutron	5
Week 3-4	Feb 5	radiation, photonic radiation (gamma- and X-rays).	
		Interaction of radiation with matter.	
8, 9, 10	Feb 7, 12,	Measurement of absorbed dose, dosimetry.	6,7
Week 4-5	14	Internal and external exposure. Radiation	
		quantities and units.	
11, 12	Feb 19, 21	Dose response characteristics, stochastic and	7
Week 6		deterministic effects of radiation.	
Week 7	Feb 26	Mid-Term Examination	
13, 14, 15	Feb 28, Mar	Radiation protection principles, shielding. US and	8
Week 7-8	5,7	international regulatory guidelines. Ecological safety.	
16, 17	Mar 12, 14	Radiation measurement and instrumentation.	9
Week 9		Particle counters, neutron measurements.	
		Calibration.	
	Mar 18-22	SPRING BREAK	
18, 19, 20	Mar 26, 28,	External radiation safety	10
Week 10-11	Apr 2		
21, 22	Apr 4, 9	Internal radiation, control, radioactive waste	11
Week 10-11		management, accidents.	
23, 24	Apr 11, 16	Radiation from reactors, fission yield and	12
Week 12-13		products, yield-specific radiation.	
25, 26	Apr 17, 22	Radiation safety standards and regulations,	13
Week 13-14		individual monitoring, environmental sampling	
		techniques and monitoring.	
27, 28, 29	Apr 24, 29,	Application of ALARA (As Low As Reasonably	References
Week 14-15	May 1	Achievable), emergency response training,	
		decommissioning and decontamination	
	As per	Final Examination	
	published		
	schedule		

Breakdown of Course Material (AME 583)