AME 521 Engineering Vibrations II

Fall 2010 Department of Mechanical Engineering University of Southern California

Description: 3 units.

> Multi-degree of freedom systems; modal analysis; Rayleigh's quotient; continuous systems; modal analysis; beams, rods, membranes; Galerkin, Rayleigh Ritz methods;

finite elements.

Prerequisite: AME 420

Instructor	Professor Ben Yang
	Office: OHE 430;
	Phone: (213) 740-7082; Email: bingen@usc.edu
Meeting	Thursday 6:30-9:10 pm, RTH109
Office Hour	Wednesday 10:00 am -12 noon, Thursday 4-6 pm

Text Book: Leonard Meirovitch, 2002, Fundamentals of Vibrations, McGraw-Hill.

ISBN-13: 978-0072881806

References: [1] S. Graham Kelly, 2006, Advanced Vibration Analysis, CRC.

ISBN-13: 978-0849334191

[2] William J. Bottega, 2006, Engineering Vibrations, CRC.

ISBN-13: 978-0849334207

Grading: 20% Midterm Exam

> Homework 30% **Project** 10% Final Exam 40%

> Total 100 %

Homework: Weekly homework assigned, and due the following week.

Late homework receives **NO** credits.

Project: A project requesting software MATLAB will be assigned.

A final report will be due at the end of the semester.

Topics and Reading Assignments:

- Review of single-degree-of-freedom systems (Chapter 3 of the textbook) -1 week
- Establishment of equations of motion (Chapter 2) -1 week
 - o Newton's laws
 - o Lagrange's equations
 - o Small oscillation and linearization (two methods)
- Multi-degree-of-freedom systems (Chapter 3 and handouts) 4 weeks
 - o Spring-mass-damper systems
 - o Methods of influence coefficients for linear systems
 - Natural modes of vibration
 - o Eigenvalue problems and solutions
 - o Rayleigh's quotient
 - o Steady-state response to harmonic excitations
 - Vibration absorbers
 - o Transient response via modal analysis
 - o Damping in vibrating systems
 - o Gyroscopic systems
 - o Use of MATLAB in vibration analysis
- State equations and transfer function formulation (Handouts) 1 week
 - o State equations and solution via eigenvector expansion and numerical integration
 - o Transfer function formulation and convolution integral
 - O Transient response via inverse Laplace transform for general mechanical systems described by $M\ddot{x} + (D+G)\dot{x} + Kx = f$.
- Distributed vibrating systems (Chapter 7) 4 weeks
 - o Boundary-initial value problems of strings, rods, shafts and beams
 - o Hamilton's principles and equations of motion
 - o Solution of eigenvalue problems
 - o Natural normal modes and eigenfunction expansion
 - o Systems with lumped end masses
 - o Damping in distributed systems
 - o Self-adjoint and non-self-adjoint systems
 - Green's function formulation
 - Vibration of membranes
- Approximate methods for distributed systems (Chapters 5 and 8) 2 weeks
 - o Rayleigh's quotient
 - o Galerkin's method
 - o Rayleigh Ritz method
 - o Finite element method